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Abstract—Despite significant interest in the research com-
munity, the development of multi-camera applications is still
quite challenging. This paper presents Ella - a dedicated pub-
lish/subscribe middleware system that facilitates distribution,
component reuse and communication for heterogeneous multi-
camera applications. We present the key components of this
middleware system and demonstrate its applicability based on
an autonomous multi-camera person tracking application. Ella
is able to run on resource-limited and heterogeneous VSNs.
We present performance measurements on different hardware
platforms as well as operating systems.

I. INTRODUCTION
Increasing interest in Visual Sensor Networks (VSN) [1]

drives the development of multi-camera applications in private
and public areas.

Developing distributed applications in a multi-camera sen-
sor network often includes repetitive tasks like implementing
sensor data capturing, transport or visualization. The imple-
mentation of infrastructural mechanisms like data transport,
node discovery and node failure detection are typically time
consuming and error prone. Doing this in each new application
significantly increases development time. However, facilities
for component reuse, communication and fault tolerance mech-
anisms can be outsourced to a middleware system.

In this paper we present a middleware with a special focus
for smart-camera networks featuring heterogeneous hardware,
software, and networking technology. We show how the
dedicated middleware facilitates and speeds up application
development. We show the applicability of our architecture in a
concrete use-case of distributed multi-camera person tracking.

The remainder of this paper is organized as follows: in
Section II we present relevant related work, in Section III we
discuss the general properties of VSN applications and how
they can be supported by a middleware and we also show our
use case as an example, Section IV describes our middleware
system in more detail, Section V outlines how the application
for our use case is built on top of the middleware. Finally, we
show an evaluation of the application and the architecture in
Section VI.

II. RELATED WORK
Middleware systems specially designed for VSNs aim

at providing support for developers of VSN applications in
speeding up and facilitating development.

Detmold et. al [2] present a multi-layered middleware
for distributed video surveillance. This middleware however,
builds on top of services like HTTP transport which cause a
major overhead and make the middleware hardly suitable for
embedded systems. Thus it builds upon an infrastructure of
backend servers which handle CPU-intensive processing tasks.

In [3] the authors present a publisher-subscriber middle-
ware for DSP-based smart cameras. It can be used for dynamic
reconfiguration, i.e. for changing the tasks running in the
system. Publishers provide data which is then consumed by
subscribers. Both can reside either on the same DSP or on
a remote processor connected via PCI. This middleware is
extended in [4] and [5].

[6] presents an agent-oriented approach to middleware for
DSP-based smart cameras. Here, autonomous agents are used
to transfer processing functionality between nodes. In a multi-
camera tracking case study, agents hop from one node to an-
other in order to continuously track an object moving through
the surveyed area. The authors present an evolved version of
the middleware with improved performance characteristics in
[7]. This middleware system is then further developed and
presented in [8].

A publish-subscribe middleware for wireless sensor net-
works has been recently presented in [9]. A special feature
of this system is that it is able to connect clusters of a sparse
wireless sensor network by piggybacking data on mobile nodes
(e.g. mobile phones) moving between clusters. However, its
HTTP-based communication causes some overhead in the
communication channel.

III. MULTI-CAMERA APPLICATIONS IN A
HETEROGENEOUS VSN

While there are many different application areas for Visual
Sensor Networks, still many parts of these applications are
similar to each other. Sensor data capturing, data transport or
visualization remain the same in most cases. Thus, constructing
applications from existing building blocks and only adding
application-specific modules can drastically speed up the de-
velopment and enables the reuse of well-tested and proven
application parts.

In a Visual Sensor Network, data can be processed in
several ways: within a single node using multiple modules (e.g.
from the sensor to a processing module), between multiple
nodes (e.g. data aggregation from multiple sensors) or from



a node to a sink (e.g. to display images). Ideally, this com-
munication is done transparently to the application dependent
where the receiver of data is located.

In order to be scalable as well as robust, newly started
and failing nodes should be detected respectively. Nodes
started during run should seamlessly integrate into the existing
network and collaborate in the application, failing nodes must
be compensated by the remaining cameras.

Heterogeneity often poses problems in developing VSN
applications. Cameras may not be homogeneous in terms of
hardware and software. Other nodes (like the operators PC)
may be integrated into the network. Providing a platform
independent substrate for developing VSN applications can re-
duce implementation time and minimize errors in the resulting
application.

Use case: Person tracking in a heterogeneous VSN. In our
case-study application, we perform distributed person tracking
on multiple cameras where at any point in time, only a single
camera is responsible for tracking the person. In the event
that the person leaves the field of view (FOV) of the currently
tracking camera or is otherwise lost, the camera initiates a
handover during which the other cameras try to find the person.
This is either done on all cameras, or on a subset of only
neighbouring cameras. The handover is performed by means
of an auction as described in [10]. In any case, each camera
typically streams its currently captured video stream to an
operator PC running a graphical user interface.

Looking at the global dataflow of this application, this
means that the tracking module is not always active on every
camera. Only after winning the handover auction, the tracker
is activated.

Camera Network. In a heterogeneous network, the applica-
tion must be runnable on different hardware platforms, make
use of different network technologies and support different
operating systems.

In our use-case we work in a multi-camera network envi-
ronment which is heterogeneous in three different aspects: (i)
camera and sensor hardware, (ii) operating systems and (iii)
networking technology. First, we use Intel Atom-based smart
cameras built by SLR Engineering1. As a second platform
we use custom-built PandaBoard2-based camera systems. The
operator application runs on a standard PC. While the smart
cameras run a Linux derivative, the operator PC runs Windows
8.

The SLR cameras are equipped with an Intel Atom proces-
sor running at 1.6 GHz and an 100 MBit Ethernet interface.
Furthermore, the SLR camera has a CCD image sensor with
a native resolution of 1360× 1024 pixels.

In contrast, the PandaBoard platforms are equipped with
Logitech HD Pro c920 webcams. They are based on Texas
Instruments OMAP 4430 system-on-chip which features a
dual core ARM Cortex-A9 MPCore CPU running at 1.2 GHz
and uses a 802.11 b/g/n wireless connection to the network.
The connected Logitech c920 webcam operates with a native
resolution of 3MP. The PandaCam is the current result of our
efforts to build an energy-efficient smart camera with high
computing power.

1www.slr-engineering.at
2http://www.pandaboard.org

IV. MIDDLEWARE SYSTEM
In order to be useful in the context of Visual Sensor

Networks, a middleware must match several requirements
besides simplifying application development. First, it must
be robust enough to detect and possibly correct failures in
nodes. Second, it must be flexible enough to allow for ap-
plication restructuring and quick exchange of functionality.
Thus, applications should be assembled from several modules
instead of being monolithic. Third, it should be made easy
for developers to port their existing code to the middleware
system. Further the middleware should provide mechanisms
to decouple individual modules, i.e. make them independent
wherever possible.

We introduce Ella, a distributed middleware system im-
plementing the publish/subscribe paradigm. Although, Ella is
designed to be generic and independent from a specific appli-
cation domain, it offers many features useful in VSN appli-
cations. Its componentized approach (dividing an application
into single modules) enables the composition, extension and
reconfiguration of applications using single building blocks.
Further, it can handle all data and control communication and
is able to construct the data flow in an application purely
from subscription requests. The mode of distributed operation
in a smart camera network can be very well supported by
a middleware system. Typical operations like data transport,
coordination, node discovery or failure detection can be sup-
ported by a middleware and do not need to be implemented
in every application individually.

A. Publish/Subscribe
Publish/subscribe is an event based middleware paradigm,

defining two different roles: (i) the publisher, which produces
and publishes data, and (ii) the subscriber, which shows interest
in events using subscriptions [11].

Publish/Subscribe, as illustrated in Figure 1, is a mecha-
nism which allows for elegant decoupling of functional ele-
ments within an application. A module may be publisher and
subscriber at the same time, i.e. it processes data from another
publisher and publishes the results itself. A component for pub-
lish/subscribe management takes care of decoupling. Instead
of directly connecting the publisher and subscriber modules,
a publisher announces its events and a subscriber can indicate
interest in certain types of events. The publish/subscribe man-
ager takes care of matching published events and subscriptions
and is also responsible for delivering the published data to
all subscribers. A key requirement of publish/subscribe is that
neither publishers nor subscribers need to be aware of each
other. A publisher does not need to keep track of where its
data is going and how many subscribers exist for its events,
and a subscriber does not need to care about where publishers
are located and where their data is coming from (i.e. the local
node or a remote node). All this is transparently handled by
the publish/subscribe middleware.

Figure 1 shows an approach for distributed pub-
lish/subscribe. Here, each node runs a local publish/subscribe
manager. This manager keeps track of the subscriptions to its
local publishers and of the other nodes in the network running
the same middleware system.

1) Decoupling: A publish-subscribe system enables decou-
pling in the following dimensions:
• Space decoupling: Modules do not need to know

where they and other modules are located in the



Fig. 1. A distributed publish/subscribe system. The local manager component
provides operations for publishing, (un)subscribing and notifies subscribers of
new events.

network. This means that publishers do not hold any
references to subscribers and vice versa. In a VSN,
e.g., a publisher of images does not need to care if
they are delivered to one or more displays or other
modules.

• Time decoupling: Publishers and subscribers do not
need to participate in an interaction at the same time.
The publisher might for instance publish an event
while there is no subscriber connected. Publishers
which start after a subscriber can still be matched to an
earlier subscription request. In a VSN, cameras may
not start up at the same time, still they must form one
distributed application.

• Synchronization decoupling: Preparing events does
not block the publishers, and subscribers can be
notified of an event, even though they are currently
executing another activity. As an example, a publisher
of images can capture the next image while the current
image is still delivered to subscribers.

The three forms of decoupling described above are espe-
cially important for applications in the VSN domain because
they enable heterogeneous networks which are (i) scalable, (ii)
flexible and (iii) fault tolerant.

B. Implementation Details
Since Ella is fully distributed, it provides a mechanism to

discover other nodes in the network, that run Ella. This means,
on startup Ella tries to find all other nodes in the network
by performing an IP broadcast. Every node receiving this
message, replies directly to finish this initialization process.
Hence, every node is aware of all available remote nodes
within the network.

The following sections provide an overview over the most
important functions and parts of Ella.

1) Subscription System: Ella uses type-based subscription,
i.e. a subscriber specifies a certain data type to subscribe to.
By default, the subscriber will be subscribed to all matching
publishers. As an addition, Ella provides the possibility to
request a template object from each subscriber. The middle-
ware will then ask each publisher (which is matching in type)
to generate such a template object and will hand it to the
prospective subscriber. The subscriber can then decide whether
this specific publisher is accepted or not. Further, the subscriber
can optionally disable the inquiry on remote nodes.

2) Network management and remote operation: To sup-
port a convenient way of developing and deploying software
modules for Ella, the middleware provides a transparent node
discovery mechanism which is used to detect any running Ella
instances on other nodes in the network. This relieves the
developer of the need for managing other nodes in the network.
As soon as an Ella instance is detected, it is registered as a
known host and it will also be checked for suitable publishers
of events requested by local subscribers. This way, it is much
easier to scale an existing application without having to modify
existing code. As soon as Ella detects other instances, it will
include them in its operation.

On startup, Ella tries to first discover other nodes in
the network. By default this is done with a UDP broadcast.
This broadcast also contains connection information necessary
to address this node in the network. However, this may be
exchanged with any other suitable discovery provider (e.g. for
non-IP compatible media like ZigBee). Upon reception of a
broadcast message a node will send a unicast answer to the
broadcasting node with its own connection information. Thus,
each node keeps a local directory of known remote hosts. This
directory is used when searching for matching publishers on
other nodes.

Whenever a subscriber requests a new subscription, all
remote hosts will be inquired about matching publishers. If
some are found, proxy objects at the remote node and stubs
at the subscriber node will be created which act as transparent
transport points for published event data. A proxy acts as
subscriber at the remote node, serializes the event data and
sends it to the stub. The stub deserializes it and publishes it
as a local publisher for the original subscriber to receive.

The requested subscription types of each subscriber module
are cached by the local Ella instance. Whenever a new node
is discovered in the network, it will also be inquired about
suitable publishers.

3) Communication: Ella instances on remote nodes use an
efficient message structure to exchange data. A binary protocol
is used to encode message types and to transport any necessary
data. For any given message payload, only 9 bytes of overhead
are added, one byte for the message type, and four bytes each
for the sender node ID and the message ID. For small networks
this can be reduced by only using single bytes for the sender
node ID.

Besides data communication, Ella provides also a control
channel which can be used to exchange application-specific
messages between publishers and subscribers.

Ella has been developed in C#.Net. It is capable of running
in the open source Mono3 runtime and can thus be deployed
on all major operating systems and many other platforms.
Since it is only performing high-level tasks like I/O and man-
agement of subscriptions, its overhead compared to a native
implementation is very low. The choice of a bytecode based
language makes Ella modules inherently platform-independent
(for purely managed modules). In addition, it is easily possible
to integrate native code components into any .Net application.
Thus, performance critical application parts can be written in
e.g. C++ and be integrated into Ella with low effort. Of course,
also pre-existing native code can be integrated but must be
platform-specific.

Ella modules can either be automatically detected and

3http://www.go-mono.org



loaded at runtime, or may be explicitly instantiated by a host
application and then passed to the Ella system.

V. CASE STUDY: MULTI-CAMERA SINGLE PERSON
TRACKING

In this section, we present a case study of our architecture.
We have built a multi-camera person tracking system which is
able to track a selected person through the network and hand
off tracking responsibility to neighbouring cameras whenever
the object leaves the FOV of the camera currently tracking it.
The cameras also transmit their current view along with the
results of the tracker to an operator PC where this information
is shown in a graphical user interface. Each module of our
application is an Ella publisher and/or subscriber.

As depicted in Figure 2, three major modules are con-
cerned in the realization of this system. The CV component
is responsible for performing the computer vision tasks of
acquiring images from the sensor and performing tracking as
soon as the tracking responsibility is assigned to the respective
camera node. It publishes the acquired images as well as
tracking results indicating the location of the tracked object.
The Handover component takes care of agreeing with other
cameras on the tracking responsibility. In case a tracked object
is about to leave the field of view of the camera, it will initialize
an auction by publishing an AuctionState event. Cameras
submit bids for the object using control messages. The camera
with the highest bid will win the auction and will then be
responsible for further tracking the object. The UI module is
a visualization component for the security operator who will
initially select the object to be tracked.

Fig. 2. The components in our application. Each camera runs a handover
and a tracking module. The operator PC runs a user interface. Red solid lines
indicate published events, black dashed lines indicate control messages.

Using the publish/subscribe mechanism and the control
channel in Ella, this application can be realized with an elegant
decoupling of components. First, CV is publishing images
(to be displayed in UI) and tracking results (containing the
location in the image and the confidence of the tracked object)
in case it is responsible for tracking. Both, UI and Handover
are subscribed to this tracking information. UI uses it to show
the bounding box of the tracked object as overlay to the camera
image stream. Handover is informed of the current tracking
status with this information and can react to e.g. a lost object.

Handover publishes an auction state event which initializes
and ends an auction in case a handover is necessary. If a camera
wants to contribute to an auction with its own bid, it will use
the control channel to directly address the auction initiator.

Handover uses tracker control messages on the control channel
to start and stop the tracker and to pass the model of the object
to be tracked to the tracker. UI does the same once the operator
has selected an object to track in one of the cameras’ views.

A. Object Tracking
The native tracker and image acquisition implementations

are wrapped in an Ella module called CV.
As the people tracking application is intended to run in

realtime on low-power hardware, the design of the tracking
algorithm is constrained by the need for low computational
complexity. In the following, we briefly describe our current
implementation.

In our current setup, cameras are mounted statically, there-
fore allowing background modelling algorithms to be used.
As a first processing stage, we identify foreground pixels by
employing the method of Schreiber and Rauter [12]. In the
next step, we perform a labeling of connected components
using the linear-time labeling algorithm from [13]. We then
calculate the smallest bounding box around each component
and refer to them as foreground regions.

For each foreground region, we compute a feature vector f
by employing background-weighted histograms in RGB space
using 8 bins for each color channels, leading to n = 256 bins
in total. Background weighting is performed by computing

f = w · h,

where h is the normalised histogram of the foreground region
and w is a weight vector. We calculate w on the initial selection
of a person by employing the method of Comaniciu et al. [14]
in order to compute the individual components wu of w by

wu = min
(
bmin∗

bu
, 1

)
,

where b is the normalised histogram of the background com-
puted on an empty image frame and bmin∗ is the smallest
non-zero element of b. The feature vector M that is calculated
on the region selected by the user constitutes the model of the
object of interest.

For associating foreground regions to the model, we em-
ploy the Bhattacharyya coefficient

d(f,M) =

n∑
i=1

√
fi ·Mi

followed by a thresholding d(f,M) > θ. θ can be tuned in
order to allow for a more conservative association, meaning
that high values of θ lead to fewer false positives and more
false negatives. By experimenting with different values of θ,
we found that θ = 0.5 provides a satisfing tradeoff. The
association mechanism can be extended to tracking multiple
objects by storing one model M1, . . . ,Mn for each object of
interest.

During the development of this algorithm, we have ex-
perimented with possible alternatives to the RGB color space
(LAB, HS) and to the Bhattacharyya coefficient as a distance
metric (L2, EMD). However, all of our experiments showed
that the combination of background weighted RGB histograms
performs better than all other combinations. We found that
image normalisation gives an additional improvement to our
current implementation, but drastically increases the computa-
tional burden, so we did not include it.



Hardware
Running

components ∅CPU
∅ Mem.

Usage
SLR Camera CV + Handover 71.7% 87 MB
PandaCam CV + Handover 70.5% 106 MB
Desktop GUI 2.6% 140 MB

TABLE I. PERFORMANCE MEASUREMENTS GENERATED IN THE
SMART CAMERA DEMONSTRATOR.

VI. EVALUATION
In this Section, we present evaluations on our middleware,

the application and the camera hardware used in our setup. We
will show that the middleware-specific overhead is very low
and that the application delivers significant performance in its
operation.

We use both, the SLR cameras as well as the PandaBoard
based systems and measure the CPU load and memory con-
sumption during the execution. The graphical user interface of
the application has been executed and measured on a desktop
computer equipped with an Intel Core i7 running at 3.4GHz
and 16 GB memory.

We use live data instead of test videos in order to include
the overhead generated by capturing images directly from the
sensor. While grabbing images from a video makes the results
more reproducible, it is computationally less expensive and
thus the measurement would not reflect the real application.
We captured the load information during approx. one minute
of operation with frames of 640×480 pixels. In these tests,
three SLR cameras and two PandaCams were in use.

In a second experiment, we measure the overhead gener-
ated by the middleware and the application alone without mea-
suring the load generated by image acquisition and tracking. To
achieve this, we first generate tracker results for each camera
from concurrently recorded videos. This processing is done
offline. The results are fed in textual form of comma separated
value files to each camera. A special module emulates the
tracker by reading the values from the CSV file. On top of that,
the application remains unchanged, the Handover component
receives tracking results and performs the handover as usual.
Further, no images are transferred to the user interface. In
this configuration, we can measure the load generated by the
handover component and the middleware.

A. Results
Table I shows an overview of the average CPU and memory

load on each platform in the network.
The respective camera where we measure the load is at

first not responsible for tracking but receives the tracking
responsibility at a later point in time. This can be seen
in the increased CPU and memory load. The PandaBoard
(Figure 4) based cameras and the SLR cameras (Figure 3)
show a comparable performance. However, our PandaBoard-
based camera is also targeted at energy-efficient operation. It
consumes only approx. 3 Watts in operation, while the SLR
cameras consume up to 20 Watts. From this point of view, the
PandaCam is a good choice for battery-based operation.

Figures 5 and 6 show the load generated by handover
and middleware without the computer vision module running.
The figures clearly show that the overhead generated by the
middleware is very low, and thus it is very well suited for
operation on low-power devices. Since it is written in a high-
level language, it provides high developer efficiency at a
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Fig. 3. CPU and memory performance of the SLR cameras.
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Fig. 4. CPU and memory performance of the PandaBoard based cameras.



reasonable performance cost.
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Fig. 5. CPU and memory performance of the SLR cameras without the CV
module running.

VII. CONCLUSION
In this paper, we have presented Ella, a publish/subscribe

middleware to ease development of multi-camera applications.
Ella reduces implementation effort by providing facilities for
standard tasks in a VSN application but still has a low resource
footprint. In a usecase we showed the performance of our
system as a whole and of single components. Ella has recently
been released as an open-source project4.
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