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ABSTRACT

In this paper, we combine k-coverage with the Cooperative Multi-

robot Observation of Multiple Moving Targets problem, de�ning

the new problem of online multi-object k-coverage. We demonstrate

the bene�ts of mobility in tackling this and propose a decentralised

multi-camera coordination that improves this further. We show

that coordination exploiting shared visual features is more e�ective

than coordination based on Euclidean distance. When coordinating

k-coverage in a distributed way, our results suggest that the design

of coordination mechanisms should shi� towards decisions being

made by potential responders with up-to-date knowledge of their

own state, rather than a coordinating camera.

KEYWORDS
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1 INTRODUCTION

�e ability of smart cameras to pre-process visual information on

site is o�en exploited, however li�le work has been done on a

major bene�t of smart camera networks: to operate e�ectively

and e�ciently without central coordination. In large networks of

mobile smart cameras, decentralised coordination becomes more

pressing as cameras can relocate to areas where communication

with a central component might not be possible, for example due to

lack of mobile network signal. Nevertheless, mobile smart cameras

allow for i) rapid deployment in unknown environments without

existing infrastructure, and ii) adaptation to unforeseen and rapidly

unfolding situations.

In this paper we are interested in how to achieve high levels of k-

coverage of a number of target objects, measured online over time,

when both, cameras and objects, can move. For sensor networks

in general, k-coverage is achieved when a monitored region is

covered by at least k sensors [5], and is used as a measure in one-

shot coverage optimisation problems. When measured over time

as targets move, this gives rise to an online version of k-coverage,

where it is generally not possible to ensure all targets are k-covered

on an ongoing basis (e.g., as objects disperse or evade sensors, or

as sensors fail), and instead we are faced with the objective of
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maximising the number of targets for which the network achieves

k-coverage, over time. We call this online multi-object k-coverage.
�e problem studied here extends the Cooperative Multi-Robot

Observation of Multiple Moving Targets problem (CMOMMT) [12]

to consider: (i) the case when the set of objects to cover changes

over time, (ii) directional rather than omnidirectional cameras, and

most importantly (iii) how to achieve k-coverage in this context [5].

In networks of static smart cameras, Esterle et al. [1, 3] showed

how the e�ciency of decentralised coordination (in terms of task

performance and resource overhead) could be improved by cameras

learning the neighbourhood relations between their �elds of view

(FoVs) at runtime. Here, we ask if this might aid the coordination

of a network of mobile cameras. Our research questions are:

(1) Assuming each camera is controlled locally by an agent

with access to only local information, to what extent can

a network of mobile cameras operating in a distributed

fashion maximise online multi-object k-coverage?

(2) If camera agents can exchange information locally through

message passing to coordinate their movements, can on-

line multi-object k-coverage be improved?

(3) Can learning neighbourhood relations between cameras

bene�t this, in terms of either performance in achieving

online multi-object k-coverage, or the e�ciency trade-

o� between this performance and the resource overhead

(speci�cally, movement) involved in achieving it?

�e experimental simulation study presented in this paper demon-

strates that the addition of local multi-camera coordination im-

proves online multi-object k-coverage by a network of mobile

cameras, in a variety of di�erent scenarios. �is was found to

be true across a range of di�erent coordination schemes, even

some that appear counter-intuitive. We also discuss the poten-

tial improvements in network-wide multi-object k-coverage when

learning neighbourhood relations during runtime. Neighbourhood

relations prove preferable to Euclidean distance when selecting

communication partners, although, selecting random partners is as

e�ective over time. However, our results further suggest that the

responding camera is best placed to decide which object to cover.

�e next two sections of this paper present a formal problem

de�nition and related work. Section 4 addresses research ques-

tion 1, evaluating distributed control with no communication or

coordination. Section 5 turns to research questions 2 and 3, pre-

senting several variants of a decentralised coordination approach,

based on inter-camera “calls for help”, various response models, and

how cameras can learn neighbourhood relations during runtime.

Sections 6 and 7 present and discuss results respectively.

2 PROBLEM STATEMENT

We consider a set of n mobile camerasC = {c1, c2, ..., cn } and a set

of objects O = {o1,o2, ...,om }. At present we consider only the 2D
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Figure 1: Illustration of an object in a camera’s FoV. FoV is

illustrated in blue with a range ri , an orientation ωi , and
angle βi on both sides of ωi . �e object is at angle αi,a to the

camera’s orientation and distance di,a .

case, such that each object and each camera has an xi ,yi location,

®xi = (xi ,yi ). Each camera ci can move with a velocity ®si and rotate

with an angular velocity ui . Furthermore, cameras communicate

via message passing. We de�ne a subset P ⊆ O of all known objects,

where objects of interest are denoted p1,p2, ...,pl ∈ P . Objects in

O can become important and unimportant to the network at any

time. One can think of this process being driven by an operator or

a speci�c camera identifying interesting behaviour, thus rendering

an object as important (in P ) or unimportant (in O but not in P ).

Each camera ci has its own �eld of view (FoV) fi which is mod-

elled as a cone and de�ned by a range ri , an angle ωi de�ning

the viewing orientation relative to a �xed reference point, and an

angle βi de�ning the width on either side of ωi . �e range of a

camera is limited by the distance at which an object can be detected

and identi�ed on-board the camera. �erefore a camera’s state is

de�ned as ci = 〈®xi , ®si ,ui ,ωi , ri , βi 〉. �is de�nes a snapshot at a

particular point in time and can be further indexed by t to repre-

sent the camera’s state over time. Speci�cally, the discrete-time

behaviour of a camera ci can be de�ned as

®xi (t + 1) = ®xi (t) + ®si (t)

ωi (t + 1) = ωi (t) + ui (t) (1)

�e velocities ®si and ui are controlled by an internal agent at each

time t with the aim of achieving the current objective (e.g. follow

object, move to cover object, move back to original location).

We consider an object oa to be covered at a given time t , if the

object is geometrically within fi :

cov(oa , fi , t) =

{
1, if di,a ≤ ri & |αi,a | ≤ |βi |
0, otherwise,

where di,a is the Euclidean distance and αi,a is the angle between

the object oa and the camera ci . �is is illustrated in Figure 1.

We consider an object oj to be k-covered at a given time t if

kcov(oa ,k, t) =

{
1, if

∑n
i=1

cov(oa , fi , t) ≥ k
0, otherwhise.

In our scenarios, each object has a 5% chance of becoming im-

portant at any time step, and then remains important for a random

number of time steps drawn from the uniform distribution [5, 100].

For a given value of k , provided by an operator and known to

all cameras, the aim is to maximise the k-coverage of objects over

time, while minimising the total amount of camera movement.

T∑
t=1

m∑
a=1

kcov(oa ,k, t)

where T represents a �nite time period of interest.

3 RELATEDWORK

�e presented work extends the Cooperative Multi-robot Observa-

tion of Multiple Moving Targets (CMOMMT) which was introduced

as an NP-hard problem by Parker and Emmons [12]. �ey gener-

ate arti�cial force�elds for each object of interest which a�racts

individual robots to targets. Werger and Matarić [15] extend this

towards W-CMOMMT (weighted CMOMMT) giving a weight to

each target. �ey then use BLE (Broadcast of local eligibility) to

directly coordinate tasks among the robots. Jung and Sukhatme [6]

use learn densities of sensors and targets to steer individual robots

to not su�ciently covered areas. �is essentially leads to higher

coverage of the available targets. Kollin and Carpin [8] performs

target loss prediction to decide on when to call for help. �ey use

broadcasting in order to ensure continues 1-coverage di�erent ob-

jects. However, their main concern is to maximise overall coverage

rather than covering objects with multiple sensors at once.

Covering objects with multiple sensors has received quite some

a�ention as k-coverage in sensor networks. �e idea is to have

redundant measurements of a speci�c location [5]. �is redundancy

allows for resource constraint sensor networks to cover areas be�er

or allow for sleep-cycles e�ectively prolonging network lifetime [9].

Liu et al. [10] speci�cally de�ne directional k-coverage for visual

sensors and discuss the bene�ts of k-coverage using cameras.

Fusco and Gupta [4] propose a simple greedy algorithm to op-

timally place and orient directed sensor for k-coverage of static

objects in the environment. Micheloni et al. [11] identify activity

density maps determine areas highly frequented by target objects

and use an expected-maximization process to de�ne optimal orien-

tations of PTZ cameras. CMOMMT and coverage optimisation in

camera networks has been researched quite intensively [14, 13, 7].

However, the problem of k-coverage with unknown number of

targets using mobile smart cameras only received li�le interest yet.

Our work is based on the ideas proposed by Esterle et al. [1, 3],

who introduced a market-based approach in combination with

arti�cial pheromones to e�ciently coordinate tracking tasks in

smart camera networks with limited resources. We transfer these

ideas to networks of mobile smart cameras and the problem of

distributed k-coverage.

4 BASELINE BEHAVIOUR AND RESULTS

First, we are interested in establishing the levels of online multi-

object k-coverage achievable by distributed control, where there

is no coordination between cameras. �is forms a baseline for

comparison against later approaches, where inter-camera commu-

nication is used as a basis for decision-making and online learning.

�ere are two sources of change that the cameras must adapt to,

over time. First, the set of objects to cover may change in its

membership, and second, the physical positions of objects change.

To evaluate distributed control approaches in the context of

these dynamics, we constructed six qualitatively di�erent scenarios

in the CamSim [2] smart camera network simulator. �ese are

depicted in Figure 2. Objects and cameras move in a straight line

according to a random vector, bouncing back in a random fashion

upon reaching the boundary. Cameras can move as fast as objects

and can turn fast enough to keep passing objects within their FoV.

We study three non-communicative baseline control approaches:
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 2: Evaluated scenarios. Green dots represent cameras

and blue cones their respective FoVs. Gray blocks illustrate

opaque walls/areas.

(1) Fixed locations: Each camera has an assigned �xed location

corresponding to its start position (see Figure 2).

(2) Random movement: Cameras have a starting location and

move with a random vector. �eir orientation changes by

bouncing o� from the boundary of the environment.

(3) Random and following: As random movement but changes

velocity in order to follow important objects.

Figure 3 shows results for these three approaches. All graphs

show mean results over 30 independent runs, while error bars

represent one standard deviation. T = 1000 time steps, and k = 3.

It is clear that using �xed locations may achieve some very small

k-coverage if there is an initial overlap. Pure random movement
generally performs poorly since cameras do not follow important

objects, thusk-coverage happens only by accident for a very limited

time. Random and following performs by far the best at k-coverage,

as well as at overall coverage of important objects (more than 75%

on average in each scenario). While �xed locations can achieve

this as well for overall coverage, this is highly dependent on their

geometric overall coverage of the scene.

5 DECENTRALISED COORDINATION

To achieve a more coordinated approach to online multi-object

k-coverage, while still retaining the decentralisation property, we

next investigate a number of inter-camera communication schemes.

Cameras notify others of important objects within their FoV, send-

ing a “call for help”. Upon receiving this, a camera decides how

to react, based on their local information. Cameras use message

passing to communicate. While we could consider simply broad-

casting all information to all cameras, such a number of requests

would be prohibitively expensive to process on board resource con-

strained cameras. �e outline coordination algorithm is described

in Algorithm 1, from which two important questions arise:

(1) To avoid broadcasting to all other cameras, how should

individual cameras focus their communication e�orts (i.e.,

on the most relevant recipients)?
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Figure 3: Illustration of baseline approaches �xed locations,
randommovement, and randommovement and following for
all 6 scenarios. �e top yellow bar represents 1-coverage,

second green bar illustrates 2-coverage, and bottom blue

bars represent objects being at least k-covered.

Algorithm 1: �ery-based dynamic k-coverage algorithm

1 foreach ci ∈ C at time t do
2 foreach oa ∈ O & cov(oa , fi , t) do
3 if oa ∈ P then

4 Notify other cameras as described in Section 5.1

5 Adjust camera to cover object oa (Equation 1)

6 else

7 if Received noti�cation then

8 React to noti�cation (Section 5.3)

9 else

10 Baseline behaviour (Section 4)

11 end

12 end

13 end

14 end

(2) How should a camera receiving such a “call for help” react?

I.e., when and where should it move, or how should it issue

follow-on communications?

5.1 Baseline Communication Strategies

In addition to a baseline broadcast behaviour, we evaluate three

strategies for the targeting of inter-camera messages: k-closest
relies on the Euclidean distance between cameras, notifying only

the k−1 closest cameras to the camera’s own location. k-furthest
noti�es the k−1 furthest cameras from the notifying camera. Fi-

nally, k-random does not rely on the distance between cameras,

but communicates with a random set of cameras in the network.

Both k-furthest and k-closest are implemented in CamSim

such that they use global information about the location of indi-

vidual cameras. More realistically, k-closest could be interpreted

as using short-range wireless technology. However, it is not nec-

essary to explore the implementation feasibility of this further, as

the results reported in this paper show that communicating purely

based on distance can be improved upon using other methods.
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Figure 4: Illustration of the overlap vision graphwith 3 cam-

eras and the local view of the graph on camera c2 over time.

5.2 Learning Overlap Relations for

Targeted Communication

O�en, cameras observe the same area. While each camera could

analyse its entire FoV and identify potential overlaps with others,

we rely on commonly observed moving objects to identify such

areas. Since we are interested in the impact of this approach on the

network, in CamSim we assume objects can be perfectly tracked

and re-identi�ed by di�erent cameras.

Knowledge about commonly tracked objects is built up by each

individual camera. We model this information as a graph, that

can be interpreted as a neighbourhood relation between the two

cameras. Inspired by the pheromones used in the foraging process

of ants and the work by Esterle et al. [1, 3] on static smart camera

networks, an edge is reinforced when two cameras observe the

same object. At each discrete time step when a camera ci observes

a common object oa with another camera c j , we increase the value

on a local link λ(i, j). Since both cameras are aware of the shared

object, λ(i,a) and λ(j, i) increase equally. To allow the network

to adapt, we also arti�cially “evaporate” each link at a base level

over time. To account for changes in distance between cameras,

camera movement leads to further evaporation. In our simulation

study, we reinforce links by a δ = 1 per object per time step. Each

link strength λ evaporates per time step with a base factor of 0.995

and an additional factor of 0.95 if the camera changes its pose or

location. We selected δ and the evaporation factor to �t to our

scenarios. Changing the values of them allows to adapt to the

dynamics of the environment as it will increase or decrease the

duration to unlearn previously learned links.

Figure 4 illustrates an example where two cameras are moving

in the same direction, while a third moves perpendicularly. Black

dots with arrows indicate objects and their direction of movement.

Green dots with blue cones show cameras with their respective

FoVs. Green lines indicate which camera follows which object.

Blue lines between the cameras illustrate the overlap relations for

c2, and the graph above shows the strength of these over time. �e

link to both other cameras increases quickly, but decreases for c1

as the shared object moves out of the FoV of c2. �e link to c3 is

reinforced until a�er t2, as an object is visible to both cameras.

We use this local neighbourhood information to focus requests

of other cameras, based on their potential overlap. As discussed in

the context of static cameras by Esterle et al. [3], in contrast to using

the Euclidean distance, cameras physically close but separated by

an obstacle (e.g., a wall) would not be contacted. Further, the

decay in the overlap graph means links also represent recency. �e

following communication strategies use the overlap graph:

k-Best picks the k−1 strongest links from the overlap graph

and communicates with these cameras.

Step generates a probability of camera ci communicating with

camera c j by thresholding the link strength. �is is de�ned as:

PStep(i, j) =

{
1, if λi, j > θ
η, otherwise,

(2)

Smooth interprets the strength of a link to another camera as a

relative probability of communicating with it. �is is de�ned as:

PSmooth(i, j) =
1 + λ(i, j)

1 + λ(i, j∗)
(3)

where

j∗ = argmax

l
λi,l ,∀l ∈ c1 . . . cn .

Step and Smooth were �rst proposed by Esterle et al. [3]. We set

the Step threshold θ = 10 and residual probability η = 0.2.

5.3 Response models

When receiving to a request, the camera could simply oblige, and

move to cover the object of interest. However, this might lead to

over-provisioning on individual objects as well as losing objects

currently covered by some cameras. In addition, this might lead

to cameras constantly trying to cover di�erent objects, ge�ing

stuck in-between both of them, as they always follow the most

recent request. �erefore, in addition to this basic strategy (termed

Newest-Nearest) we devised three additional response models:

(1) Newest-Nearest (NN): �e a�empts to cover to the most

recently requested object from another camera. If there

are multiple requests, it will choose the nearest.

(2) Available (AV): �e camera will use the Newest-Nearest
response model if and only if the camera is currently not

occupied by covering/following a di�erent object.

(3) Graph (GR): �e camera considers the learnt overlap graph,

a�empting to cover the object requested by the camera

with the strongest link. As with Available, if the camera is

occupied, it will continue to cover its current object.

(4) Received calls (RE): In contrast to the other response mod-

els, this one considers currently covering cameras for a

given object. Here, the camera will provision the object

with the least requests as this corresponds to a small num-

ber of cameras currently observing this object. As before,

this is only done, if the camera is currently available.

6 RESULTS

We analyse our communication strategies in combination with our

proposed response models using the previously discussed scenar-

ios.All experiments have been performed 30 times and the mean re-

sults and standard deviations are shown. Based on its performance

with respect to k-coverage in the baseline experiments reported in

Section 4, random with following was used as the default behaviour

a camera reverts to when no noti�cations are received. Figure 5

shows the achieved network-wide coverage of objects using the

di�erent approaches. We included the results achieved when only
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using baseline behaviour and it is very clear that adding commu-

nication to the baseline behaviour increased online multi-object

k-coverage. �is is regardless of which communication strategy

or response model is used. Even counter-intuitive communication

strategies, such as k-furthest, achieve be�er results than no com-

munication indicating the bene�ts of our noti�cation approach.

While Step and Smooth perform very well, the importance of

response models becomes clear. While all response models perform

be�er in covering objects than any non-coordinated approach,

Graph does not perform very well in achieving k-coverage. Never-

theless, it still achieves high coverage with one camera (1-coverage)

throughout all experiments. With respect to communication strate-

gies, the performance ofk-Random and Received Calls seems counter-

intuitive. While it only communicates with random cameras, rather

than those that might be close-by, it still achieves very high k-

coverage. �is is due to the fact that k-Random communicates

only with k−1 other cameras per timestep, sampled randomly each

time. Eventually, this leads to communications with all cameras.

However, cameras are only requested gradually, leaving the rest

of the cameras available to provision other calls. Broadcast, in

comparison, communicates with all cameras at once, making them

e�ectively unavailable to other calls. Step and Smooth, on the

other hand, will continuously call the same cameras with only a

small probability of calling others.

Results presented in Figure 6 show the average trade-o� between

higher movement and the achieved proportion of k-covered objects.

All results are normalised (Coverage was normalised by the number

of objects that have been covered at least once). �e bene�t of

Available as well as the drawback of higher movement when using

Received Calls becomes apparent. Again, the importance of the

response model over the actual communication strategy become

evident. �e response model Available usually requires only about

40% of the movement in comparison to Received calls while both of

them achieve about the same average coverage (between 45% and

55%). �e trade-o� becomes more pronounced when obstacles are

in the experimental scenario as obstacles may a�ect the shortest

routes for contacted cameras towards objects to cover.

7 DISCUSSION

In this paper we present a novel approach for k-coverage of moving

objects in a con�ned scenario. Our approach uses knowledge

of commonly observed objects to focus communication e�orts.

We were able to show the bene�ts of notifying cameras about

objects of interest. Our results clearly indicate the bene�ts of

coordinated noti�cation as well as provisioning within the network.

However, in our approach cameras currently only rely on local

information and do not update each other on currently observed

objects. We speculate that including this information exchange

will improve the network-wide performance even further. In real

world deployments, one will also have to take account of the time

a detector/tracker requires to identify important objects.

Coming back to our initial research questions: (i) as shown in

Figure 3, a small improvement in k-coverage can be achieved for a

given number of cameras when those cameras can move, even in an

uncoordinated fashion; (ii) as Figure 5 shows, the addition of local

multi-camera coordination improves this further, and this is true

for all the evaluated coordination schemes, even some that appear

counter-intuitive; (iii) selecting communication partners based on

neighbourhood relations was an improvement relative to selecting

them based on Euclidean distance. However, a surprising result

was that notifying random cameras o�en performed equally as well.

Further analysis revealed that approaches based on neighbourhood

relations focussed noti�cations, where a higher distribution would

have been preferable. �is broader communication is achieved

over time by the k-random strategy. �is stands in contrast to

static networks where it has previously been shown that focussed

communication is highly bene�cial. Importantly, we have not

disproved the bene�ts of communicating using neighbourhood

relations in mobile camera network coordination.

However, cameras need to be able to make decisions based on

rapidly changing states of themselves and their peers, and incor-

porate this information into their coordination behaviour. How to

achieve this remains an open challenge. As a starting point, in our

experiments, the choice of response model had a greater impact

on the performance than the choice of communication strategy.

�is suggests that the camera responding is best placed to decide

whether it should a�end or not, as it has the most up-to-date in-

formation about its current state. �e challenge is then how to

enhance response behaviour with knowledge of the state of nearby

cameras. �en, it may turn out that a simple random communica-

tion strategy is su�cient, when used with such behaviour.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4
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(e) Scenario 5
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(f) Scenario 6

Figure 5: Comparison of the di�erent approaches in terms of k-coverage with default behaviour random movement with
following. �e top yellow bar represents mean 1-coverage, second green bar illustrates mean 2-coverage, and bottom blue

coverage represents mean k+-coverage and corresponding standard deviations over 30 runs. Static represents Fixed lcoations,
Random is for Random movement, RandFoll is for Random and following baseline behaviour. Communication strategies are

BC for Broadcast, BE for k-best, CL for k-closest, FU for k-furthest, RA for k-random, SM for Smooth, and ST for Step.

Response models are AV for Available, NN for Newest-Nearest, GR for Graph, and RE for Received calls.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE

(a) Scenario 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE

(b) Scenario 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE

(c) Scenario 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE

(d) Scenario 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE

(e) Scenario 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TOTAL MOVED

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
O

VE
R

ED

BC-AV
BC-NN
BC-GR
BC-RE
BE-AV
BE-NN
BE-GR
BE-RE
CL-AV
CL-NN
CL-GR
CL-RE
FU-AV
FU-NN
FU-GR
FU-RE
RA-AV
RA-NN
RA-GR
RA-RE
SM-AV
SM-NN
SM-GR
SM-RE
ST-AV
ST-NN
ST-GR
ST-RE
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Figure 6: Trade-o� of movement vs. achieved proportional coverage of previously seen objects for Scenario 1, 2 and 6.
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