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Abstract—The Internet-of-Things (IoT) becomes more and
more pervasive and supports us in our daily activities. However,
when individual devices struggle in accomplishing certain tasks,
they have to cooperate in order to achieve desired outcomes.
In the absence of a central controller, devices have to coordinate
autonomously within the network in order to attain and complete
as many tasks as possible. We propose CHAINMAIL, a novel,
distributed approach to coordinate sensors to attain tasks that
cannot be accomplished by single, but only by cooperation of
multiple devices. We demonstrate our approach with an IoT case
study on multi-object k-coverage with autonomously operating
mobile cameras and show that our approach does not over-
provision tasks, allowing the remaining devices to attain other
duties. This enables our network to provision more tasks in the
same time as other comparable solutions.

I. INTRODUCTION

The Internet-of-Things (IoT) is comprised of a variety
of sensors and actuators, interacting with each other and
exchanging information to complete their various tasks. This
allows us to get more contextual information or support us to
achieve our goals altogether.

However, not in all cases tasks can be accomplished sat-
isfactory by a single device, requiring active and concurrent
cooperation among multiple devices on a specific task. Fur-
thermore, many of those networks are deployed ad hoc and
consist of a large number of devices making a centralised
approach infeasible. Having each individual device controlled
by an autonomous software agent, enables them to coordinate
themselves in a distribution fashion in order to achieve com-
mon tasks. Distributed coordination gets more pressing when
devices are mobile and able to relocate during runtime. This
makes the local environment subject to constant change which
may not be accounted for a priori.

Coordinating mobile devices to attain tasks brings about
various benefits but at the same time a number of challenges
that need to be tackled. On one side, idle devices can help
others to provision tasks and allow to complete common tasks
quicker and with less resources than the individual. On the
other side, devices need to make sure they do not miss tasks
within the environment that may require their attention and,
at the same time, do not over-provision tasks which may lead
to wasting valuable resources.

Exploiting the above benefits and tackling the challenges
simultaneously, is the main goal of this paper. More precisely,

we are interested in assigning k devices to changing set of
unknown, moving tasks. This assignment should not over-
or under-provision tasks and at the same time maximise the
number of overall attained tasks. In order to achieve this in
a distributed fashion, we propose CHAINMAIL, an approach
to assign k devices to a changing set of moving tasks in the
absence of a central control.

The problem was introduced by Esterle and Lewis [1] and is
a combination of the k-coverage problem introduced by Huang
and Tseng [2] and the Cooperative Multi-Robot Observation of
Multiple Moving Targets problem (CMOMMT) [3] introduced
by Parker and Emmons. Huang and Tseng optimise coverage
of the monitored region by at least k sensors and use a single-
shot optimisation technique to do so. However, when tasks
move, a one time optimisation will not provide satisfactory
outcomes, unless the entire region can be covered by k sensors
to begin with. This gives rise to an online version of k-
coverage in order to attain as many tasks as possible with at
least k devices. In contrast, CMOMMT tries to cover objects
moving in the environment. However, their goal is not to cover
them with multiple sensors but with at least one sensor at any
time. Furthermore, the set of objects remains stable throughout
the experiment, ensuring that each device is covering an object
to continuously provide good performance. In our case, the
set of tasks can change dynamically at runtime, due to newly
arising and disappearing, or resolving, tasks. This renders
attaining devices of resolved tasks useless to the network-wide
performance evaluation. Therefore we derive the following
research questions:

1) If devices are controlled by individual agents, making
decisions based only on local information, can they
coordinate themselves in a distributed fashion in order to
provision tasks with k devices while keeping the number
of tasks attained by more than k devices to a minimum?
In other words, can we provision each task with exactly
k devices?

2) Furthermore, can agents coordinate in order to maximise
the number of attained tasks while at the same time
maximising the number of tasks provisioned with at least
k devices? In other words, can we maximise both, the
number of provisioned tasks in general and the number
of tasks provisioned with at least k devices?



To demonstrate the benefits of CHAINMAIL, we use a visual
sensor network case study employing mobile smart cameras
individually operated by software agents trying to observe
objects moving around in the environment. In addition to
collaborative sensing and search and track/rescue applications,
other areas are collaborative construction [4], edge/fog com-
puting [5], [6] or multi-robot interactions (e.g. collaborative
drilling) [7].

In the following section of this paper a formal problem defi-
nition for k-assignment with respect to the corresponding case
study is given. Section III discusses related work. Section IV
presents CHAINMAIL for distributed coordination for multi-
task k-assignment. Furthermore, we discuss the initiation
problem of such an approach and how communication range
impacts the performance of our approach to assign exactly k
devices to each task. Section V presents the results with respect
to maximise the number of attained tasks while increasing the
number of tasks provisioned by k devices. We conclude our
paper with an outlook on potential future work in Section VI.

II. PROBLEM STATEMENT

The multi-task k-assignment problem can be stated as
follows.

Consider a set of tasks Ot = {o1, o2, ..., om} at time t
that need to be provisioned and a set of mobile devices
D = {d1, d2, ..., dn}. Importantly, the set of devices remains
constant while the set of tasks may change over time as new
tasks arise and others disappear. Tasks are unknown to the
devices until a task is within the sensing range of a device.
They arise and remain with a probability of σ and a duration
of γ, respectively. Both, tasks and devices, can move around
in a 2D plain with a velocity ~si(t). Their location at time t
is denoted as ~xi(t) = (xi, yi). Specifically, the discrete-time
behaviour of a device di can be defined as

~xi(t+ 1) = ~xi(t) + ~si(t) (1)

This velocity ~si is controlled by an internal autonomous
software agent.

Devices communicate via message passing and employ a
unit disk model to simulate wireless communication with a
fixed range of ci for simplicity. Finally, each device has a
dedicated sensing/actuating area fi. We consider a task oa
to be provisioned by a device di if the task is within the
sensing/actuating area fi. Therefore, a device’s state is defined
as di = 〈~xi, ~si, fi, ci〉. This defines a snapshot at a particular
point in time and can be further indexed by t to represent the
device’s state over time.

The mobile devices are now tasked with two goals. First,
they should maximise the number of tasks being provisioned
at any given time t. We consider a task oa to be provisioned
at time t by a device di, if the task is geometrically within fi:

prv(oa, fi, t) =

{
1, if ~xa(t) is inside fi
0, otherwise,

However, each task requires k devices to be accomplished.
Therefore, the second goal requires them to maximise the
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Figure 1. Illustration of a task in a camera’s FoV. FoV is illustrated in blue
with a range ri, an orientation ωi, and angle βi on both sides of ωi. The
task is at angle αi,a to the camera’s orientation and distance δi,a.

number of task provisioned with k devices. We consider a
task oa to be provisioned by k devices at a given time t if

kprv(oa, k, t) =

{
1, if

∑n
i=1 prv(oa, fi, t) ≥ k

0, otherwhise.

For a given value of k, provided by an operator and known
to all devices, we are interested in the performance of the
network. This is the number of tasks being provisioned by k
devices over the entire duration T of our experiment:

performance =

∑T
t=1

∑m
j=1 kprv(oa, k, t)

max(prv)
(2)

where max(prv) is the maximum
∑T

t=1

∑m
j=1 prv(oa, t)

across all tested approaches. This performance allows us to
compare different approaches with each other.

For our specific case-study, using mobile smart cameras, we
define the sensing/acting area fi of device di as the respective
field of view (FoV), which is modelled as a cone and defined
by a range ri, an angle ωi, defining the viewing orientation
relative to a fixed reference point, and an angle βi, defining the
width on either side of ωi. The range of a camera is limited by
the distance at which an object can be detected and identified
using the on-board camera. To change the orientation of fi,
each camera di has a rotational speed ui. We can define the
discrete-time behaviour for the orientation as

ωi(t+ 1) = ωi(t) + ui(t), (3)

where ui is again controlled by an autonomous internal
software agent. The agent will adjust ui and ~si in such a
way to keep a designated task oa ∈ Ot within fi. This is done
independently of CHAINMAIL and illustrated for the case of
an unidirectional visual sensor in Figure 1. Importantly, each
device only has a single designated task it actively provisions
and follows. However, other tasks within its sensing/actuating
area are also provisioned. In a smart camera network, a
task is an object that exhibits specific behaviour. This can
be determined by the individual camera [8]. The object is
removed from the set of tasks if it does not exhibit a given
behaviour anymore.

III. RELATED WORK

The problem tackled in this paper brings together the k-
coverage problem introduced by Huang and Tseng [2] and the
CMOMMT problem introduced by Parker and Emmons [3].



The k-coverage problem assumes a set of sensors covering
the entire environment. The goal is to select a subset in
order to cover specific stationary locations with at least k
sensors. This allows to conserve resources of the network by
turning off sensors not in the required subset. Hefeeda and
Bagheri [9] propose a distributed approach to approximate
optimal k-coverage in a network. Elhoseny et al. [10] propose
using mobile nodes to cover known and stationary targets
with k sensors. In order to optimise the coverage, they use
an evolutionary approach. Liu et al. [11] analyse the benefits
of moving sensors to detect and cover specific, but unknown,
stationary points in the environment. Fusco and Gupta [12]
propose a simple greedy algorithm to optimally place and
orient directed sensor for k-coverage of static objects in the
environment.

In contrast Cooperative Multi-robot Observation of Multiple
Moving Targets (CMOMMT), tries to find and cover moving
targets that are initially unknown. Werger and Matarić [13]
propose W-CMOMMT (weighted CMOMMT) giving a weight
to each target. A robot then broadcasts local eligibility in order
to coordinate tasks among all robots. Since targets are initially
unknown, Jung and Sukhatme [14] learn densities of sensors
and targets. They use this information to direct idle robots to
insufficiently covered areas. To ensure continuous 1-coverage
of various objects, Kollin and Carpin [15] perform a target
loss prediction allowing the individual devices to call for help
in a timely manner.

In camera networks, Micheloni et al. [16] identify activity
density maps, determining areas highly frequented by target
objects and use an expected-maximization process to define
optimal orientations of PTZ cameras. CMOMMT and cov-
erage optimisation in camera networks has been researched
quite intensively [17], [18], [19]. However, the problem of
k-coverage with unknown number of targets using mobile
devices only received little interest yet.

IV. CHAINMAIL

We propose CHAINMAIL, a distributed approach to provi-
sion tasks with k devices. The fundamental idea to CHAIN-
MAIL is that devices detecting tasks notify others to provision
it. In contrast to previous approaches, CHAINMAIL does not
continuously notify k − 1 other devices1, but notifies only
another single device at random, which in turn, passes this
message on until k devices agreed to provision the task. The
CHAINMAIL algorithm is given in Algorithm 1.

Each transmitted message to notify another device contains
information about the task oa, its location ~xa within the
environment, a list of previous recipients ρ of the notification
message, and k indicating how many devices are still required
to provision the task: m = {oa, ~xa, ρ, k}.

Furthermore, each device di locally manages a “blacklist”
`i of devices which not to notify. Each device would update
this local list with devices having recently sent notifications

1or k other devices, depending whether or not the detecting device is able
to provision the task or not.

or being on a list of recipients ρ in a received notification
message. Using `i allows each individual device to locally
make a profound decision whether to communicate with
another device or not. However, devices only operate on
local information and do not constantly exchange information
about their state with other devices. We introduce a forgetting
parameter in order to update the list over time and allow
previously excluded devices to be notified again. Otherwise,
each device would add all other devices in its list ` over time
and would not be able to notify any other device about detected
tasks. We use a simple forgetting parameter φj for each device
dj ∈ `. We initialise φj = τ . Over time, φj will be reduced
by a forgetting rate ∆:

φj(t+ 1) = φj(t)− τ ∗∆

When φj ≤ 0 we remove φj from `i and device dj will be
considered again as potential collaboration partner to provision
tasks. Alternatively, the forgetting parameter could also be
used as an inverse probability to decide whether or not to
notify another device.

A. CHAINMAIL initiation policy

CHAINMAIL is initiated whenever a device detects a new
task, of which it was not previously aware. However, this task
might have been detected before by another device and the
current device is not aware of this situation. Therefore we
need to make sure only a single device initiates CHAINMAIL
for a given task at any time.

In order to ensure this, each device will send information
about its intention to start CHAINMAIL to all devices in its
communication range. If another device has already requested
others to provision this particular task, the device will be
notified and will not initiate the CHAINMAIL again. We can
assume that a device that has initiated CHAINMAIL will
also stay close to the respective task and hence receive the
announcement of intent of another device. However, this is
not guaranteed as at least one device knowing about the
initiated CHAINMAIL needs to be close enough to receive the
initiation request from the other device. This might not be the
case when either the CHAINMAIL message travelled in the
opposite direction of the new device, or the communication
range of each device equals only the sensing range and the
other provisioning device is on the opposite side of the task
and hence outside the communication range.

In case two devices detect the task at the same time, time
stamps of the messages can be used to determine the device
being allowed to initiate the CHAINMAIL. Additionally, the
first notification of CHAINMAIL could be directed to the other
device, ensuring that both already observing devices are also
provision the task right away.

While this initiation policy does not overcome the hidden
terminal problem [20], it allows to limit the number of over-
provisioning devices. In our case-study, CamSim operates as
discrete simulation environment, and therefore we rely on
simple time steps and first-come-first serve practice.



Algorithm 1: CHAINMAIL algorithm for distributed k-
assignment for networks of mobile sensors

1 foreach di ∈ D at time t do
2 foreach oa ∈ O & cov(oa, fi, t) do
3 Ask every device within range ci (cp.

Section IV-B) if provisioning task oa.
4 if Not provisioned yet then
5 Update ρ ∪ {di} in message
6 Notify single random other device dj within

vicinity ci, where dj /∈ `i
7 Adjust ui and ~si to provision task oa (Eq. 3

and 1)
8 end
9 end

10 if Received notification then
11 Update ρ ∪ {di} in message.
12 if di provisions another task then
13 Notify another device dj , where dj /∈ ρ and

dj /∈ `i
14 Update `i ∪ {dj}
15 else
16 Adjust ui and ~si to provision task oa (Eq. 3

and 1)
17 Update k = k − 1 in message
18 if k > 0 then
19 Notify another random device dj within

vicinity ci where dj /∈ `i and dj /∈ ρ
20 Update `i ∪ {dj}
21 end
22 end
23 Update local list `i = (ρ\`i) ∪ `i
24 else
25 Search for tasks
26 end
27 end

B. Communiation range

Esterle and Lewis [1] propose different strategies to limit
communication. However, CHAINMAIL uses simple message
passing in combination with randomly communicating with
another device in order to achieve provisioning of all tasks
with at least k devices. Therefore, we do not need specific
strategies to focus our communication efforts. However, we
analyse different communication distances for our random
communication approach. We consider four different ranges:

1) Single range (SR): uses the visual range of the device
as a communication range. The device can communicate
with other devices within this distance.

2) Double range (DR): assumes the communication range
is double the distance of the visual range.

3) Triple range (TR): similar to double range, triple range
communication can communicate with any device within
three times the distance of the visual range.

4) Full area (FA): the device can communicate with any

device within the scenario independent of the distance
between those two devices.

We use a case-study in mobile camera networks tasked
to provision and observe objects moving around in the en-
vironment to test CHAINMAIL. We used CamSim simulation
environment [21] and the same experimental scenarios as in
Esterle and Lewis [1]. An overview of the starting positions
of the cameras in each scenario is given in Figure 2. Table I
presents an overview of all scenarios, the employed number
of cameras and maximum number of tasks (objects). Further-
more, the mean sum of time steps in which tasks are present
and the mean sum of time steps in which tasks are provisioned
by at least one device using the outcomes of the best approach
averaged over 30 repeated experiments. We can observe that
in most cases, 70% of the tasks are provisioned. We did
not test communication ranges shorter than the sensing range
as it would increase the chances of encountering the hidden
terminal problem [20].

In our scenarios, tasks and devices cannot leave the simu-
lation environment, leading to a constant number of devices
and tasks. Devices and tasks move in a random fashion by
following a straight path until reaching the boundary of the
simulation environment from where they bounce back in a
random direction. All our experiments were repeated 30 times
to account for randomness. Each experiment lasts 1000 time
steps. While we use a fixed set of tasks in our experiments,
devices do not know about the total number of available tasks
at any time. However, in the real world, tasks may not be
limited in numbers or duration. We simulate this by using σ
and γ. In all cases τ = 10, ∆ = 0.1, k = 3, σ = 0.05 and γ
is randomly drawn from [5, 100] with a uniform distribution.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 2. Evaluated case-study scenarios. Green dots represent cameras and
blue cones their respective FoVs. Gray blocks illustrate opaque walls/areas.

Figure 3 shows a snapshot of the different number of cam-
eras observing objects (provisioning tasks) for each of the 6
scenarios at time step 500–the middle of the experiment. Each
bar represents the number of cameras provisioning known
objects while the height of the bar shows the normalised mean
number of objects of interest being provisioned. As with all



Max. Conc. Tasks Tasks
Devices Tasks Overall Provisioned

Scenario 1 8 8 4503.4 3295.5 (73.2%)
Scenario 2 22 19 10680.7 8173.1 (76.5%)
Scenario 3 8 8 4493.7 2513.2 (55.9%)
Scenario 4 8 8 4515.1 2964.2 (65.7%)
Scenario 5 5 7 3976.2 3125.9 (78.6%)
Scenario 6 8 8 4514.0 3253.8 (72.0%)

Table I
OVERVIEW OF SCENARIOS. NUMBER OF DEVICES n, MAXIMUM NUMBER

OF CONCURRENT TASKS m AT ANY DISCRETE TIME STEP, AVERAGE
NUMBER OF TASKS SUMMED OVER ALL TIME STEPS, AVERAGE NUMBER

OF PROVISIONED TASKS, SUMMED OVER ALL TIME STEPS, AND
CORRESPONDING PERCENTAGE OF OVERALL TASKS.

our experiments, we tasked our network to cover all objects of
interest with k = 3 devices. It becomes apparent that limiting
communication to those devices in the vicinity allows for more
focused k-coverage where in comparison, communication with
a wider range results in more than k cameras provisioning
an object. We speculate this is due to devices travelling a
longer distance in order to provision a specific object will
also provision other random objects on the way. In smaller
scenarios where the communication range covers (almost) the
entire scenarios, this becomes less important.

V. RESULTS: k-COVERAGE USING CHAINMAIL

Results shown in Figure 4 give an overview of the average
amount of objects being provisioned by cameras over all time
steps and 30 experiments using CHAINMAIL. The results have
been normalised by the total number of detected objects. In
most cases objects are mostly provisioned by k = 3 cameras.
One of the main benefits of CHAINMAIL is its ability to keep
over-provisioning of objects to a minimum. It is also apparent
that there are a high number of outliers for objects provisioned
by 1 or 2 cameras. These outliers come about the “accidental”
coverage of objects when cameras pass by objects or objects
move through the FOV of a camera without being actively
provisioned.

Furthermore, we want to draw a comparison between the
the approaches previously proposed by Esterle and Lewis [1]
and CHAINMAIL. They investigate different communication
strategies in combination with various response models A
communication strategy refers to the decision of a camera to
notify another camera in order to provision an object while
the response models represent a local decision mechanism on
each camera whether or not to follow such an notification.
Each camera would use its communication strategy in each
time step to notify new cameras as long as an object/task is
within its FOV. They compare their approaches towards three
types of non-coordinating cameras:

1) Static: cameras are not able to move at all, constantly
remaining in their initial position.

2) Random: cameras moving randomly but not following
objects of interest intentionally.

3) Random and following: cameras move randomly but
follow objects of interest upon detection.

Their coordination approaches uses the following commu-
nication strategies: Broadcasting (BC) communicates with all
cameras in the environment, k-closest (CL) communicates
only with (k−1) closest cameras, and k-random (RA) notifies
(k − 1) other cameras in the environment. Using SMOOTH
(SM) or STEP (ST), cameras learn local neighbourhood re-
lations over time and use this information as probability or
as a threshold, respectively, to select (k − 1) cameras for
communication.

Results in Figure 5 show the normalised mean coverage
of objects throughout all experiments for the individual ap-
proaches. Since the movement of cameras in the environ-
ment is determined by the approach they are using, cameras
encounter different number of objects of interests. If we
only normalise the outcome of the approach by the number
of objects encountered, the dominant strategy would be to
ensure that each encountered object is covered by at least
k cameras independent of the number of objects/tasks in
the environment. However, we are interested in covering as
many objects with at least k cameras or more. Therefore,
we normalised the result of the individual approach by the
maximum number of encountered interesting objects among
all approaches. Interestingly, throughout all experiments, static
cameras (not moving nor coordinating their provisioning)
detected the highest number of objects. This is due to the
initially good coverage of the different networks but also due
to moving cameras starting to cluster around moving objects,
leaving a majority of the remaining area uncovered. However,
the specifics of this remains subject for future research.

The bars in Figure 5 show the mean coverage of objects
normalised by the average maximum number of objects de-
tected across all approaches and experiments for the respective
scenario. The yellow (top) section of each bar indicates the
normalised number of objects provisioned by one camera, the
green (middle) section shows the amount of objects provi-
sioned by two cameras, and the blue (lower) section represents
the portion of objects provisioned by three or more cameras.
The benefit of CHAINMAIL is apparent when trying to achieve
k+-coverage. However, to cover objects with at least 1 camera,
Random Following is achieving the best results for the first 4
scenarios. We speculate that the low performance in coverage
for Scenario 5 and 6 is coming about the added opaque walls,
representing an obstacle for objects and cameras, and allowing
objects to suddenly disappear from the FOV of a camera.
Throughout all experiments, CHAINMAIL has outperformed all
coordinated approaches previously presented by Esterle and
Lewis [1] in terms of achieving 1-coverage. In most cases,
CHAINMAIL is even able to achieve higher k-coverage than
previously proposed approaches.

VI. CONCLUSION

We presented CHAINMAIL, a distributed approach to as-
sign k devices to a set of unknown and moving tasks. The
approach achieves a high proportion of attained tasks while
not over-provisioning tasks at the same time. Furthermore, we
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(f) Scenario 6

Figure 3. Comparison of provisioning of tasks using different communication distances by the devices in the network for 6 scenarios. Each bar represents
the number of devices provisioning the percentage of tasks known to the network. Experiments have been performed 30 times and mean results are shown.

showed the effect of different ranges for communication on
the achieved k coverage.

For future work, we first plan to deploy CHAINMAIL on
real cameras to test its feasibility in real world scenarios.
Second, for directed sensors, devices do not consider the
orientation of already provisioning devices. Incorporating this
information would allow cameras to provide new information
when provisioning an object from a new angle. However, this
would introduce a trade-off for each camera between (a) the
effort to get to a position to provide information from a new
angle and (b) the additional acquired information of doing so.
Finally, we will explore the relationship between frequency
of newly arising tasks, the density of devices and the size of
the scenario in order to formulate (statistical) guarantees for

CHAINMAIL.
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(a) Scenario 1
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(c) Scenario 3
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(d) Scenario 4
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(e) Scenario 5
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(f) Scenario 6

Figure 5. Mean provision of tasks (observing objects) normalised by the average maximum number of tasks detected across all approaches and experiments
for the respective scenario as defined in Equation 2. The yellow (top) section of each bar indicates the normalised number of tasks provisioned by one device,
the green (middle) section shows the amount of tasks provisioned by two devices, and the blue (lower) section represents the portion of tasks provisioned
by three or more devices. BC corresponds to Broadcast communication, CL to communication with closest neighbours and RA with random neighbours. SM
and ST exploit learnt neighbourhood relationships. AV corresponds to available response model, NN to Nearest-Newest, RE to received requests and GR to
graph. FA is for Full Area, SR for Single Range, DR for Double Range and TR for Triple Range.


