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Abstract. Inspired by the emerging problem of CPS security, we intro-
duce the concept of controller-attacker games. A controller-attacker game
is a two-player stochastic game, where the two players, a controller and
an attacker, have antagonistic objectives. A controller-attacker game is
formulated in terms of a Markov Decision Process (MDP), with the con-
troller and the attacker jointly determining the MDP’s transition prob-
abilities. We also introduce the class of controller-attacker games we call
V-formation games, where the goal of the controller is to maneuver the
plant (a simple model of flocking dynamics) into a V-formation, and the
goal of the attacker is to prevent the controller from doing so. Controllers
in V-formation games utilize a new formulation of model-predictive con-
trol we have developed called Adaptive-Horizon MPC (AMPC), giving
them extraordinary power: we prove that under certain controllability
conditions, an AMPC controller can attain V-formation with probabil-
ity 1. We evaluate AMPC’s performance on V-formation games using
statistical model checking. Our experiments demonstrate that (a) as we
increase the power of the attacker, the AMPC controller adapts by suit-
ably increasing its horizon, and thus demonstrates resiliency to a variety
of attacks; and (b) an intelligent attacker can significantly outperform
its naive counterpart.

1 Introduction

Many Cyber-Physical Systems (CPSs) are highly distributed in nature, com-
prising a multitude of computing agents that can collectively exhibit emergent
behavior. A compelling example of such a distributed CPS is the drone swarm,
which are beginning to see increasing application in battlefield surveillance and
reconnaisance [3]. The emergent behavior they exhibit is that of flight formation.

A particularly interesting form of flight formation is V-formation, especially
for long-range missions where energy conservation is key. V-formation is em-
blematic of migratory birds such as Canada geese, where a bird flying in the
upwash region of the bird in front of it can enjoy significant energy savings.
The V-formation also offers a clear view benefit, as no bird’s field of vision is
obstructed by another bird in the formation. Because of the V-formation’s in-
trinsic appeal, it is important to quantify the resiliency of the control algorithms



underlying this class of multi-agent CPSs to various kinds of cyber-attacks. This
question provides the motivation for the investigation put forth in this paper.

Problem Statement and Summary of Results. Inspired by the emerging prob-
lem of CPS security, we introduce the concept of controller-attacker games. A
controller-attacker game is a two-player stochastic game, where the two players,
a controller and an attacker, have antagonistic objectives. A controller-attacker
game is formulated in terms of a Markov Decision Process (MDP), with the con-
troller and the attacker jointly determining the MDP’s transition probabilities.

We also introduce a class of controller-attacker games we call V-formation
games, where the goal of the controller is to maneuver the plant (a simple model
of flocking dynamics) into a V-formation, and the goal of the attacker is to
prevent the controller from doing so. Controllers in V-formation games utilize a
new formulation of model-predictive control we have developed called Adaptive-
Horizon MPC (AMPC), giving them extraordinary power: we prove that under
certain controllability conditions, an AMPC controller can attain V-formation
with probability 1.

We define several classes of attackers, including those that in one move can
remove a small number R of birds from the flock, or introduce random displace-
ment (perturbation) into the flock dynamics, again by selecting a small number
of victim agents. We consider both naive attackers, whose strategies are purely
probabilistic, and AMPC-enabled attackers, putting them on par strategically
with the controller. The architecture of a V-formation game with an AMPC-
enabled attacker is shown in Figure 1.

While an AMPC-enabled controller is expected to win every game with prob-
ability 1, in practice, it is resource-constrained : its maximum prediction horizon
and the maximum number of execution steps are fixed in advance. Under these
conditions, an attacker has a much better chance of winning a V-formation game.

AMPC is a key contribution of the work presented in this paper. Traditional
MPC uses a fixed prediction horizon to determine the optimal control action.
The AMPC procedure chooses the prediction horizon dynamically. Thus, AMPC
can adapt to the severity of the action played by its adversary by choosing its own
horizon accordingly. While the concept of MPC with an adaptive horizon has
been investigated before [5,9], our approach for choosing the prediction horizon
based on the progress toward a fitness goal is entirely novel, and has a more
general appeal compared to previous work.

In recent work [10], we presented a procedure for synthesizing plans (se-
quences of actions) that take an MDP to a desired set of states (defining a V-
formation). The procedure adaptively varied the settings of various parameters
of an underlying optimization routine. Since we did not consider any adversary
or noise in [10], there was no need for a control algorithm. Here we consider
V-formation in the presence of attacks, and hence we develop a generic adaptive
control procedure, AMPC, and evaluate its resilience to attacks.

Our extensive performance evaluation of V-formation games uses statistical
model checking to estimate the probability that an attacker can thwart the
controller. Our results show that for the bird-removal game with 1 bird being



removed, the controller almost always wins (restores the flock to a V-formation).
When 2 birds are removed, the game outcome critically depends on which two
birds are removed. For the displacement game, our results again demonstrate
that an intelligent attacker, i.e. one that uses AMPC in this case, significantly
outperforms its naive counterpart that randomly carries out its attack.

Traditional feedback control is, by design, resilient to noise, and also certain
kinds of attacks; as our results show, however, it may not be resilient against
smart attacks. Adaptive-horizon control helps to guard against a larger class of
attacks, but it can still falter due to limited resources. Our results also demon-
strate that statistical model checking represents a promising approach toward
the evaluation of CPS resilience against a wide range of attacks.

2 V-Formation

We consider the problem of bringing a flock of birds from a random initial
configuration to an organized V-formation. Recently, Lukina et al. [10] have
modeled this problem as a deterministic Markov Decision Process (MDP) M,
where the goal was to generate actions that caused M to reach a desired state.
In our caseM is an MDP as actions taken lead to probability distributions over
the states. The definition of M is given in Section 3. In this section, we present
a simple model of flocking dynamics that forms the basis of this definition.

In our flocking model, each bird in the flock is modeled using 4 variables: a
2-dimensional vector x denoting the position of the bird in a 2D space, and a
2-dimensional vector v denoting the velocity of the bird. We use s = {xi,vi}Bi=1

to denote a state of a flock with B birds. The control actions of each bird are
2-dimensional accelerations a and 2-dimensional position displacements d (see
discussion of a and d below). Both are random variables.

Let xi(t),vi(t),ai(t), and di(t) respectively denote the position, velocity,
acceleration, and displacement of the i-th bird at time t, 1 6 i 6 B. The behavior
of bird i in discrete time is modeled as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) + di(t)

vi(t+ 1) = vi(t) + ai(t) (1)

The next state of the flock is jointly determined by the accelerations and the
displacements based on the current state following Eq. 1.

The problem of whether we can go from a random flock to a V-formation
can be posed as a reachability question, where the reachability goal is the set
of states representing a V-formation. A key assumption in [10] was that the
reachability goal can be specified as J(s) 6 ϕ, where J is a fitness function
that assigns a non-negative real (fitness) value to each state s, and ϕ is a small
positive constant.

The fitness of a state was determined by the following three terms:

– Clear View. A bird’s visual field is a cone with angle θ that can be blocked by
the wings of other birds. The clear-view metric is defined by accumulating



the percentage of a bird’s visual field that is blocked by other birds. CV (s)
for flock state s is the sum of the clear-view metric of all birds. The minimum
value of CV is CV ∗= 0, and this value is attained in a perfect V-formation
where all birds have clear view.

– Velocity Matching. VM (s) for flock state s is defined as the difference be-
tween the velocity of a given bird and all other birds, summed up over all
birds in the flock. The minimum value for VM is VM ∗= 0, and this value is
attained in a perfect V-formation where all birds have the same velocity.

– Upwash Benefit. The trailing upwash is generated near the wingtips of a bird,
while downwash is generated near the center of a bird. An upwash measure
um is defined on the 2D space using a Gaussian-like model that peaks at
the appropriate upwash and downwash regions. For bird i with upwash umi,
the upwash-benefit metric UB i is defined as 1−umi, and UB(s) for flock
state s is the sum of all UB i for 1 6 i 6 B. The upwash benefit UB(s) in
V-formation is UB∗= 1, as all birds, except for the leader, have minimum
upwash-benefit metric (UB i = 0, umi = 1), while the leader has upwash-
benefit metric of 1 (UB i = 1, umi = 0).

Given the above metrics, the overall fitness (cost) metric J is of a sum-of-squares
combination of VM , CV , and UB defined as follows:

J(s) = (CV (s)− CV ∗)2 + (VM (s)−VM ∗)2 + (UB(s)−UB∗)2. (2)

A state s∗ is considered to be a V-formation whenever J(s∗)6ϕ, for a small
positive threshold ϕ.

3 Controller-Attacker Games

We are interested in games between a controller and an attacker, where the goal
of the controller is to take the system to a desired set of states, and the goal
of the attacker is to keep the system outside these states. We formulate our
problem in terms of Markov Decision Processes for which the controller and the
attacker jointly determine the transition probabilities.

Definition 1. A Markov Decision Process (MDP) M = (S,A, T, J, I) is
a 5-tuple consisting of a set S of states, set A of actions, transition function
T : S×A×S 7→ [0, 1], where T (s, a, s′) is the probability of transitioning from
state s to state s′ under action a, cost function J : S 7→R, where J(s) is the cost
associated with state s, and I is the initial state distribution.

Our definition of an MDP differs from the traditional one in that it uses a cost
function instead of a reward function. We find this definition more convenient for
our purposes. Our focus is on continuous-space MDPs; i.e., the state space S is
Rn and the action space A is in Rm. For the bird-flocking problem, n=m= 4B,
where B is the number of birds. We have four state variables and four action
variables for each bird. The state variables represent the x- and the y-components



of the position xi and velocity vi of each bird i, whereas the action variables
represent the (x- and y-components of the) acceleration ai and displacement
di of each bird i. The transition relation for the bird-flocking MDP is given by
Eq. 1.

A randomized strategy over an MDP is a mapping taking every state s to a
probability distribution P (a | s) over the (available) actions. We formally define
randomized strategies as follows.

Definition 2. Let M= (S,A, T, J, I) be an MDP. A randomized strategy σ
over M is a function of the form σ : S 7→PD(A), where PD(A) is the set of
probability distributions over A. That is, σ takes a state s and returns an action
consistent with the probability distribution σ(s).

A controller-attacker game is a stochastic game [18], where the transition
probability from state s to state s′ is controlled jointly by two players, a controller
and an attacker in our case. To view an MDP as a stochastic game, we assume
that the set of actions A is given as a product C ×D, where the controller chooses
the C-component of an action a and the attacker chooses the D-component of a.
We assume that the game is played in parallel by the controller and the attacker;
i.e., they both take the state s(t) ∈ S of the system at time t, compute their
respective actions c(t) ∈ C and d(t) ∈ D, and then use the composed action
(c(t), d(t)) to determine the next state s(t+ 1) ∈ S of the system (based on the
transition function T ). We formally define a controller-attacker game as follows.

Definition 3. A controller-attacker game is an MDP M= (S,A, T, J, I)
with A = C ×D, where C and D are action sets of the controller and the at-
tacker, respectively. The transition probability T (s, c×d, s′) is jointly determined
by actions c ∈ C and d ∈ D.

The actions of the controller and the attacker are determined by their ran-
domized strategies. Once we fix a randomized strategy for the controller, and
the attacker, the MDP reduces to a Markov chain on the state space S. Thus,
the controller and the attacker jointly fix the probability of transitioning from a
state s to a state s′. We refer to the underlying Markov chain induced by σ over
M as Mσ.

We define controller-attacker games on the flocking model by considering
the scenario where the accelerations are under the control of one agent (the
controller), and the displacements (position perturbations) are under the control
of the second malicious agent (the attacker).

Definition 4. A V-formation game is a controller-attacker game M = (S,
A, T , J , I), where S = {s | s = {xi,vi}Bi=1} is the set of states for a flock
of B birds, A = C ×D with the controller choosing accelerations a ∈ C and
the attacker choosing displacements d ∈ D, T and J are given in Eq. 1 and 2,
respectively.

In this paper, we consider reachability games only. In particular, we are given
a set G of goal states and the goal of the controller is to reach a state in G. Let



Controller
c(t) = σC (f1, s(t), J)

Attacker
d(t) = σD (f2, s(t),−J)

Plant

s(t + 1) = f(s(t), c(t), d(t))

c(t)

d(t)

s(t+ 1)

Fig. 1. Controller-Attacker Game Architecture. The controller and the attacker use
randomized strategies σC and σD to choose actions c(t) and d(t) based on dynamics,
respectively, where s(t) is the state at time t, and f is the dynamics of the plant model.
The controller tries to minimize the cost J , while the attacker tries to maximize it.

s0→ s1→ s2→ · · · be a sequence of states (a run of the system). The controller
wins on this run if ∃i : si ∈ G, and the attacker wins otherwise.

A classical problem in the study of games pertains to determining the ex-
istence of an optimal winning strategy (e.g. a Nash equilibrium) for a player.
We are not concerned with such problems in this paper. Due to the uncount-
ably many states in the state- and action-space, solving such problems for our
games of interest is extremely challenging. Instead, we focus on the problem of
determining the likely winner of a game where the strategy of the two players is
fixed. Since we consider randomized strategies, determining the likely winner is
a statistical model checking problem, which allows us to evaluate the resilience
of certain controllers under certain attack models. We are now ready to formally
define the problem we would like to solve.

Definition 5. Let M= (S,A, T, J, I) be an MDP, where A=C ×D, and let
σC : S 7→PD(C) and σD : S 7→PD(D) be randomized strategies over M . Also,
let G ⊆ S be the set of goal states of M. The stochastic game verification
problem is to determine the probability of reaching a state in G in m steps, for
a given m, starting from an initial state in M(σC ,σD).

Fig. 1 shows the architecture of a stochastic game between the controller and
the attacker, where at each time step the controller chooses action c(t) as the
C-component using strategy σC , and the attacker chooses action d(t) as the D-
component using strategy σD. The next state of the plant is determined by the
composed action (c(t), d(t)) based on the current state s(t) and the dynamics of
the plant model f .

Our main interest is in evaluating the resilience of a control algorithm σC
(a controller can be viewed as a strategy in our framework) to an attack algo-
rithm σD. The key assumption that the controller and the attacker make is the
existence of a cost function J : S 7→R+ such that

G := {s | J(s) 6 ϕ for some very small ϕ > 0} .

Given such a cost function J , the controller works by minimizing the cost of
states reachable in one or more steps, as is done in model predictive control



(MPC). Since the cost function is highly nonlinear, the controller uses an opti-
mization procedure based on randomization to search for a minimum. Hence, our
controller is a randomized procedure. One possible attack strategy we consider
(for an advanced attacker) is based on the cost function as well: the attacker
tries to maximize the cost of reachable states.

4 The Adaptive-Horizon MPC Algorithm

We now present our new adaptive-horizon MPC algorithm we call AMPC. We
will use this algorithm as the controller strategy in the stochastic games we play
on MDPs. We will also consider attacker strategies that use AMPC. AMPC is
an MPC procedure based on particle-swarm optimization (PSO) [8]. The MPC
approach can be used for achieving a V-formation, as was outlined in [19, 20].
These earlier works, however, did not use an adaptive dynamic window, and did
not consider the adversarial control problem.

The main algorithm of AMPC performs step-by-step control of a given MDP
M by looking h steps ahead—i.e. it uses a prediction horizon of length h—to
determine the next optimal control action to apply. We use PSO to solve the
optimization problem generated by the MPC procedure.

For V-formation, define the cost of ah as the minimum cost J (Eq. 2) obtained
within h steps by applying the sequence ah of h accelerations on M. Formally,
we have

Cost(M,ah, h) = min
16τ6h

J(sτah) (3)

where sτah is the state after applying the τ -th action of ah to the initial state of
M.4 For horizon h, PSO searches for the best sequence of 2-dimensional accel-
eration vectors of length h, thus having 2hB parameters to be optimized. The
number of particles p used in PSO is proportional to the number of parameters
to be optimized, i.e., p = 2βhB, where β is a preset constant.

The AMPC procedure is given in Algorithm 1. A novel feature of AMPC
is that, unlike classical MPC which uses a fixed horizon h, AMPC adaptively
chooses an h depending on whether it is able to reach a cost that is lower than
the current cost by our chosen quanta ∆i, 0 6 i 6 m, for m steps.

AMPC is hence an adaptive MPC procedure that uses level-based horizons.
It employs PSO to identify the potentially best next actions. If the actions
ah improve (decrease) the cost of the state reached within h steps, namely
Cost(M,ah, h), by the predefined ∆i, the controller considers these actions to
be worthy of leading the flock towards, or keeping it in, a V-formation.5

In this case, the controller applies the first action to each bird and transi-
tions to the next state of the MDP. The threshold ∆i determines the next level

4 The initial state of M is being used to store the “current” state of the MDP as we
execute our algorithm.

5 We focus our attention on bird flocking, since the details generalize naturally to
other MDPs that come with a cost function.



Algorithm 1: AMPC: Adaptive-Horizon Model Predictive Control

Input :M, ϕ, hmax ,m,B, β, Cost
Output: {ai}16i6m // optimal control sequence

1 Initialize `0 ← J(s0); Ĵ ← inf; i← 1; h← 1; p← 2βhB; ∆0 ← (`0 − ϕ)/m;

2 while (`i−1 > ϕ) ∧ (i < m) do
3 // find and apply first best action out of the horizon sequence of length h

4 [ah, Ĵ ]←particleswarm(Cost,M, p, h);

5 if `i−1 − Ĵ > ∆i ∨ h = hmax then
6 // if a new level or the maximum horizon is reached

7 ai ← ah
1 ; M←Mai

; // apply the action and move to the next state
8 `i ← J(s(M)); // update `i with the cost of the current state
9 ∆i ← `i/(m− i); // update the threshold on reaching the next level

10 i← i+ 1; h← 1; p← 2βhB; // update parameters

11 else
12 h← h+ 1; p← 2βhB; // increase the horizon
13 end

14 end

`i = Cost(M, âh, h), where âh is the optimal action sequence. The prediction
horizon h is increased iteratively if the cost has not been decreased enough.
Upon reaching a new level, the horizon is reset to one (see Algorithm 1).

Having a horizon h> 1 means it will take multiple transitions in the MDP
to reach a solution with sufficiently improved cost. However, when finding such
a solution with h> 1, we only apply the first action to transition the MDP to
the next state. This is explained by the need to allow the other player (the
environment or an adversary) to apply their action before we obtain the actual
next state. If no new level is reached within hmax horizons, the first action of
the best ah using horizon hmax is applied.

The dynamic threshold ∆i is defined as in [10]. Its initial value ∆0 is ob-
tained by dividing the cost range to be covered into m equal parts, that is,
∆0 = (`0− `m) /m, where `0 = J(s0) and `m =ϕ. Subsequently, ∆i is determined
by the previously reached level `i−1, as ∆i = `i−1/(m− i+ 1). This way AMPC

advances only if `i = Cost(M, âh, h) is at least ∆i apart from `i−1.
This approach allows us to force PSO to escape from a local minimum, even if

this implies passing over a bump, by gradually increasing the exploration horizon
h. We assume that the MDP is controllable. A discrete-time system S is said
to be controllable if for any given states s and t, there exist a finite sequence of
control inputs that takes S from s to t [13]. We also assume that the set G of
goal states is non-empty, which means that from any state, it is possible to reach
a state whose cost decreased by at least ∆i. Algorithm 1 describes our approach
in more detail.

Theorem 1 (AMPC Convergence). Given an MDP M= (S,A, T, J) with
positive and continuous cost function J , and a nonempty set of target states



G⊂S with G= {s | J(s)6ϕ}. If the transition relation T is controllable with
actions in A, then there exists a finite maximum horizon hmax and a finite
number of execution steps m, such that AMPC is able to find a sequence of
actions a1, . . . , am that brings a state in S to a state in G with probability one.

Proof. In each (macro-) step of horizon length h, from level `i−1 to level `i,
AMPC decreases the distance to ϕ by ∆i>∆, where ∆> 0 is fixed by the
number of steps m chosen in advance. Hence, AMPC converges to a state in G
in a finite number of steps, for a properly chosen m. AMPC is able to decrease
the cost in a macro step by ∆i by the controllability assumption and the fairness
assumption about the PSO algorithm. Since AMPC is a randomized algorithm,
the result is probabilistic. Note that the theorem is an existence theorem of hmax

and m whose values are chosen empirically in practice.

The adaptive MPC procedure, AMPC, is a key contribution of our work.
Recall that traditional MPC uses a fixed finite horizon to determine the best
control action. In contrast, AMPC dynamically chooses the horizon depending
on the severity of the action played by the opponent (or environment). AMPC is
inspired by the optimial plan synthesis procedure we recently presented in [10],
which dynamically configures the amount of the effort it uses to search for a bet-
ter solution at each step. In [10] the monolithic synthesis procedure was adap-
tive (and involved dynamically changing several parameters), whereas here the
control procedure is adaptive and the underlying optimization is non-adaptive
off-the-shelf procedure, and hence the overall procedure here is simpler.

Note that AMPC is a general procedure that performs adaptive MPC using
PSO for dynamical systems that are controllable, come with a cost function,
and have at least one optimal solution. In an adversarial situation two players
have opposing objectives. The question arises what one player assumes about
the other when computing its own action, which we discuss next.

5 Stochastic Games for V-Formation

We describe the specialization of the stochastic-game verification problem to
V-formation. In particular, we present the AMPC-based control strategy for
reaching a V-formation, and the various attacker strategies against which we
evaluate the resilience of our controller.

5.1 Controller’s Adaptive Strategies

Given current state (x(t),v(t)), the controller’s strategy σC returns a proba-
bility distribution on the space of all possible accelerations (for all birds). As
mentioned above, this probability distribution is specified implicitly via a ran-
domized algorithm that returns an actual acceleration (again for all birds). This
randomized algorithm is the AMPC algorithm, which inherits its randomization
from the randomized PSO procedure it deploys.



When the controller computes an acceleration, it assumes that the attacker
does not introduce any disturbances; i.e., the controller uses the following model:

xi(t+ 1) = xi(t) + vi(t+ 1)

vi(t+ 1) = vi(t) + ai(t) (4)

where a(t) is the only control variable. Note that the controller chooses its next
action a(t) based on the current configuration (x(t),v(t)) of the flock using
MPC. The current configuration may have been influenced by the disturbance
d(t−1) introduced by the attacker in the previous time step. Hence, the current
state need not to be the state predicted by the controller when performing MPC
in step t−1. Moreover, depending on the severity of the attacker action d(t−1),
the AMPC procedure dynamically adapts its behavior, i.e. the choice of horizon
h, in order to enable the controller to pick the best control action a(t) in response.

5.2 Attacker’s Strategies

We are interested in evaluating the resilience of our V-formation controller when
it is threatened by an attacker that can remove a certain number of birds from
the flock, or manipulate a certain number of birds by taking control of their
actuators (modeled by the displacement term in Eq. 1). We assume that the
attack lasts for a limited amount of time, after which the controller attempts to
bring the system back into the good set of states. When there is no attack, the
system behavior is the one given by Eq. 4.

Bird Removal Game. In a BRG, the attacker selects a subset of R birds,
where R�B, and removes them from the flock. The removal of bird i from
the flock can be simulated in our framework by setting the displacement di for
bird i to ∞. We assume that the flock is in a V-formation at time t= 0. Thus,
the goal of the controller is to bring the flock back into a V-formation consisting
of B−R birds. Apart from seeing if the controller can bring the flock back to a
V-formation, we also analyze the time it takes the controller to do so.

Definition 6. In a Bird Removal Game (BRG), the attacker strategy σD is
defined as follows. Starting from a V-formation of B birds, i.e., J(s0) 6 ϕ,
the attacker chooses a subset of R birds, R � B, by uniform sampling with-
out replacement. Then, in every round, it assigns each bird i in the subset a
displacement di =∞, while for all other birds j, dj = 0.

Random Displacement Game. In an RDG, the attacker chooses the displace-
ment vector for a subset of R birds uniformly from the space [0,M ]× [0, 2π] with
R � B. This means that the magnitude of the displacement vector is picked
from the interval [0,M ], and the direction of the displacement vector is picked
from the interval [0, 2π]. We vary M in our experiments. The subset of R birds
that are picked in different steps are not necessarily the same, as the attacker
makes this choice uniformly at random at runtime as well.



The game starts from an initial V-formation. The attacker is allowed a fixed
number of moves, say 20, after which the displacement vector is identically 0 for
all birds. The controller, which has been running in parallel with the attacker,
is then tasked with moving the flock back to a V-formation, if necessary.

Definition 7. In a Random Displacement Game (RDG), the attacker strategy
σD is defined as follows. Starting from a V-formation of B birds, i.e., J(s0) 6 ϕ,
in every round, it chooses a subset of R birds, R � B, by uniform sampling
without replacement. It then assigns each bird i in the subset a displacement di
chosen uniformly at random from [0,M ] × [0, 2π], while for all other birds j,
dj = 0. After T rounds, all displacements are set to 0.

AMPC Game. An AMPC game is similar to an RDG except that the attacker
does not use a uniform distribution to determine the displacement vector. The at-
tacker is advanced and strategically calculates the displacement using the AMPC
procedure. See Figure 1. In detail, the attacker applies AMPC, but assumes the
controller applies zero acceleration. Thus, the attacker uses the following model
of the flock dynamics:

xi(t+ 1) = xi(t) + vi(t+ 1) + di(t)

vi(t+ 1) = vi(t) (5)

Note that the attacker is still allowed to have di(t) be non-zero for only a small
number of birds. However, it gets to choose these birds in each step. It uses
the AMPC procedure to simultaneously pick the subset of R birds and their
displacements. The objective of the attacker’s AMPC is to maximize the cost.

Definition 8. In an AMPC game, the attacker strategy σD is defined as follows.
Starting from a V-formation of B birds, i.e., J(s0) 6 ϕ, in every round, it uses
AMPC to choose a subset of R birds, R � B, and their displacements di for
bird i in the subset from [0,M ] × [0, 2π]; for all other birds j, dj = 0. After T
rounds, all displacements are set to 0.

Theorem 2 (AMPC resilience in a C-A game). Given a controller-attacker
game, there exists a finite maximum horizon hmax and a finite maximum number
of game-execution steps m such that AMPC controller will win the controller-
attacker game in m steps with probability 1.

Proof. Since the flock MDP (defined by Eq. 1) is controllable, the PSO algorithm
we use is fair, and the attack has a bounded duration, the proof of the theorem
follows from Theorem 1.

Remark 1. While Theorem 2 states that the controller is expected to win with
probability 1, we expect winning probability to be possibly lower than one in
many cases because: (1) the maximum horizon hmax is fixed in advance, and
so is (2) the maximum number of execution steps m; (3) the underlying PSO
algorithm is also run with bounded number of particles and time. Theorem 2 is
an existence theorem of hmax and m, while in practice one chooses fixed values
of hmax and m that could be lower than the required values.



6 Statistical MC Evaluation of V-Formation Games

As discussed in Section 3, the stochastic-game verification problem we address in
the context of the V-formation-AMPC algorithm is formulated as follows. Given
a flock MDP M (we consider the case of B= 7 birds), acceleration actions a of
the controller, displacement actions d of the attacker, the randomized strategy
σC : S 7→PD(C) of the controller (the AMPC algorithm), and a randomized
strategy σD : S 7→PD(D) for the attacker, determine the probability of reaching
a state s where the cost function J(s)6ϕ (V-formation in a 7-bird flock), starting
from an initial state (in this case this is a V-formation), in the underlying Markov
chain induced by strategies σC , σD on M.

Since the exact solution to this reachability problem is intractable due to
the infinite/continuous space of states and actions, we solve it approximately
with classical statistical model-checking (SMC). The particular SMC procedure
we use is from [7] and based on an additive or absolute-error (ε, δ)-Monte-Carlo-
approximation scheme. This technique requires running N i.i.d. game executions,
each for a given maximum time horizon, determining if these executions reach a
V-formation, and returning the average number of times this occurs.

Each of the games described in Section 5 is executed 2,000 times. For a
confidence ratio δ= 0.01, we thus obtain an additive error of ε= 0.1. We use the
following parameters in the game executions: number of birds B= 7, threshold
on the cost ϕ= 10−3, maximum horizon hmax = 5, number of particles in PSO
p= 20hB. In BRG, the controller is allowed to run for a maximum of 30 steps.
In RDG and AMPC game, the attacker and the controller run in parallel for 20
steps, after which the displacement becomes 0, and the controller has a maximum
of 20 more steps to restore the flock to a V-formation.

To perform SMC evaluation of our AMPC approach we designed the above
experiments in C and ran them on the Intel Core i7-5820K CPU with 3.30 GHz
and with 32GB RAM available.

Table 1. Results of 2,000 game executions for removing 1 bird with hmax = 5, m= 40

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Bird 4 99.9 12.75 3.64
Bird 3 99.8 18.98 4.25
Bird 2 100 10.82 3.45

6.1 Discussion of the Results

To demonstrate the resilience of our adaptive controller, for each game intro-
duced in Section 5, we performed a number of experiments to estimate the prob-
ability of the controller winning. Moreover, for the runs where the controller



Fig. 2. Left: numbering of the birds. Right: configuration after removing Bird 2 and 5.
The red-filled circle and two protruding line segments represent a bird’s body and
wings. Arrows represent bird velocities. Dotted lines illustrate clear-view cones. A
brighter/darker background color indicates a higher upwash/downwash.

Table 2. Results of 2,000 game executions for removing 2 birds with hmax = 5, m= 30

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Birds 2 and 3 0.8 25.18 4.30
Birds 2 and 4 83.1 11.11 2.94
Birds 2 and 5 80.3 9.59 2.83
Birds 2 and 6 98.6 7.02 2.27
Birds 3 and 4 2.0 22.86 4.30
Birds 3 and 5 92.8 11.8 3.43

wins, the average number of steps required by the controller to bring the flock
to a V-formation is reported as average convergence duration, and the average
length of the horizon used by AMPC is reported as average horizon.

The numbering of the birds in Tables 1 and 2 is given in Figure 2. Bird-
removal scenarios that are symmetric with the ones in the tables are omitted.
The results presented in Table 1 are for the BRG game with R= 1. In this case,
the controller is almost always able to bring the flock back to a V-formation, as
is evident from Table 1. Note that removing Bird 1 (or 7) is a trivial case that
results in a V-formation.

In the case when R= 2, shown in Table 2, the success rate of the controller de-
pends on which two birds are removed. Naturally, there are cases where dropping
two birds does not break the V-formation; for example, after dropping Birds 1
and 2, the remaining birds continue to be in a V-formation. Such trivial cases
are not shown in Table 2. Note that the scenario of removing Bird 1 (or 7) and
one other bird can be viewed as removing one bird in flock of 6 birds, thus not
considered in this table. Among the other nontrivial cases, the success rate of
controller drops slightly in four cases, and drops drastically in remaining two



Table 3. Results of 2,000 game executions for random displacement and AMPC attacks
with hmax = 5 and m= 40 (attacker runs for 20 steps)

Range of noise Ctrl. success rate, % Avg. convergence duration Avg. horizon

Random displacement game

[0, 0.50]× [0, 2π] 99.9 3.33 1.07
[0, 0.75]× [0, 2π] 97.9 3.61 1.11
[0, 1.00]× [0, 2π] 92.3 4.14 1.18

AMPC game

[0, 0.50]× [0, 2π] 97.5 4.29 1.09
[0, 0.75]× [0, 2π] 63.4 5.17 1.23
[0, 1.00]× [0, 2π] 20.0 7.30 1.47

cases. This suggests that attacker of a CPS system can incur more damage by
being prudent in the choice of the attack.

Impressively, whenever the controller wins, the controller needs about the
same number of steps to get back to V-formation (as in the one-bird removal
case). On average, removal of two birds results in a configuration that has worse
cost compared to an BRG with R= 1. Hence, the adaptive controller is able to
make bigger improvements (in each step) when challenged by worse configura-
tions. Furthermore, among the four cases where the controller win rate is high,
experimental results demonstrate that removing two birds positioned asymmet-
rically with respect to the leader poses a stronger, however, still manageable
threat to the formation. For instance, the scenarios of removing birds 2 and 6
or 3 and 5 give the controller a significantly higher chance to recover from the
attack, 98.6% and 92.8%, respectively.

Table 3 explores the effect of making the attacker smarter. Compared to
an attacker that makes random changes in displacement, an attacker that uses
AMPC to pick its action is able to win more often. This again shows that an
attacker of a CPS system can improve its chances by cleverly choosing the at-
tack. For example, the probability of success for the controller to recover drops
from 92.3% to 20.0% when the attacker uses AMPC to pick displacements with
magnitude in [0, 1] and direction in [0, 2π]. The entries in the other two columns
in Table 3 reveal two even more interesting facts.

First, in the cases when the controller wins, we clearly see that the controller
uses a longer look-ahead when facing a more challenging attack. This follows
from the observation that the average horizon value increases with the strength
of attack. This gives evidence for the fact that the adaptive component of our
AMPC plays a pivotal role in providing resilience against sophisticated attacks.
Second, the average horizon still being in the range 1-1.5, means that the adap-
tation in our AMPC procedure also helps it perform better than a fixed-horizon
MPC procedure, where usually the horizon is fixed to h> 2. When a low value
of h (say h= 1) suffices, the AMPC procedure avoids unnecessary calculation
that using a fixed h might incur.



In the cases where success rate was low (Row 1 and Row 5 in Table 2, and
Row 3 of the AMPC game in Table 3), we conducted additional 500 runs for
each case and observed improved success rates (2.4%, 9% and 30.8% respectively)
when we increased hmax to 10 and m to 40. This shows that success rates of
AMPC improves when given more resources, as predicted by Theorem 1.

7 Related Work

In the field of CPS security, one of the most widely studied attacks is sen-
sor spoofing. When sensors measurements are compromised, state estimation
becomes challenging, which inspired a considerable amount of work on attack-
resilient state estimation [4, 6, 14–16]. In these approaches, resilience to attacks
is typically achieved by assuming the presence of redundant sensors, or coding
sensor outputs. In our work, we do not consider sensor spoofing attacks, but
assume the attacker gets control of the displacement vectors (for some of the
birds/drones). We have not explicitly stated the mechanism by which an at-
tacker obtains this capability, but it is easy to envision ways (radio controller,
attack via physical medium, or other channels [2]) for doing so.

Adaptive control, and its special case of adaptive model predictive control,
typically refers to the aspect of the controller updating its process model that
it uses to compute the control action. The field of adaptive control is concerned
with the discrepancy between the actual process and its model used by the con-
troller. In our adaptive-horizon MPC, we adapt the lookahead horizon employed
by the MPC, and not the model itself. Hence, the work in this paper is orthogonal
to what is done in adaptive control [1, 11].

Adaptive-horizon MPC was used in [5] to track a reference signal. If the
reference signal is unknown, and we have a poor estimate of its future behavior,
then a larger horizon for MPC is not beneficial. Thus, the horizon was determined
by the uncertainty in the knowledge of the future reference signal. We consider
cost-based reachability goals here, which allows us to choose a horizon in a more
generic way based on the progress toward the goal. More recently, adaptive
horizons were also used in [9] for a reachability goal. However, they chose a
large-enough horizon that enabled the system to reach states from where a pre-
computed local controller could guarantee reachability of the goal. This is less
practical than our approach for establishing the horizon.

A key focus in CPS security has also been detection of attacks. For example,
recent work considers displacement-based attacks on formation flight [12], but it
primarily concerned with detecting which UAV was attacked using an unknown-
input-observer based approach. We are not concerned with detecting attacks, but
establishing that the adaptive nature of our controller provides attack-resilience
for free. Moreover, in our setting, for both the attacker the and controller the
state of the plant is completely observable. In [17], a control policy based on
the robustness of the connectivity graph is proposed to achieve consensus on
the velocity among a team of mobile robots, in the present of non-cooperative
robots that communicate false values but execute the agreed upon commands.



In contrast, we allow the attacker to manipulate the executed commands of the
robots. The cost function we use is also more flexible so that we can encode more
complicated objectives.

We are unaware of any work that uses statistical model checking to evaluate
the resilience of adaptive controllers against (certain classes of) attacks.

8 Conclusions

We have introduced AMPC, a new model-predictive controller that unlike MPC,
comes with provable convergence guarantees. The key innovation of AMPC is
that it dynamically adapts its receding horizon (RH) to get out of local minima.
In each prediction step, AMPC calls PSO with an optimal RH and corresponding
number of particles. We used AMPC as a bird-flocking controller whose goal is
to achieve V-formation despite various forms of attacks, including bird-removal,
bird-position-perturbation, and advanced AMPC-based attacks. We quantified
the resiliency of AMPC to such attacks using statistical model checking. Our
results show that AMPC is able to adapt to the severity of an attack by dy-
namically changing its horizon size and the number of particles used by PSO to
completely recover from the attack, given a sufficiently long horizon and execu-
tion time (ET). The intelligence of an attacker, however, makes a difference in
the outcome of a game if RH and ET are bounded before the game begins.

Future work includes the consideration of additional forms of attacks, includ-
ing: Energy attack, when the flock is not traveling in a V-formation for a certain
amount of time; Collisions, when two birds are dangerously close to each other
due to sensor spoofing or adversarial birds; and Heading change, when the flock
is diverted from its original destination (mission target) by a certain degree.
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