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Abstract—Collaboration in teams is essential in robot collec-
tives. In order to achieve goals, individual robots would otherwise
not be able to accomplish. In a such a distributed and highly
dynamic system, a global coordination might not be possible.
In this paper, we analyse static team affiliations, defined at de-
ployment time, and compare its efficiency against dynamic team
affiliations generated during runtime using random selection.
Since operators might not be able to determine all dynamic
aspects of the given environment at the time of deployment,
we further propose a novel, goal-aware approach to affiliate
each robot with a team. This approach brings together insights
from biology, sociology, and psychology. In this novel approach,
robots only operate on aggregated information from the network
which is potentially changing during runtime. Finally, we also
introduce an approach to select a team affiliation during runtime
using machine learning techniques. In 60,000 experiments we
analyse the efficiency and further discuss the different benefits
and drawbacks of the proposed approaches.

I. INTRODUCTION

In robot collectives, a set of autonomous robots interacts
and potentially collaborates in order to achieve their indi-
vidual goals. In many cases, these goals correlate and often
collaboration in teams will yield in better and more efficient
outcomes. Such team formations, whether temporal or perma-
nent, become even more pressing when given tasks can not
be accomplished by individual robots alone. Team formation
has received a lot of attention in various research areas such
as biology [1], [2], [3], sociology [4], [5] or robotics [6], [7],
[8].

In this work, we are specifically interested in the self-
organising ability of robots to affiliate themselves with a team
at runtime, based on the current performance of the team
towards its goals. Moreover, we investigate whether simple
reactive behaviour, based on instantaneous information, or
(machine) learning techniques, employing information learnt
over a longer time horizon, is more efficient. We investigate
this in a multi-robot setting with robots having only limited
and directed areas for sensing/acting. Specifically we investi-
gate the multi-object k-coverage problem [9]. The multi-object
k-coverage problem has two main goals. On one hand, the
network has to detect as many tasks in the environment as
possible and on the other hand the collective has to provision
a set of randomly arising tasks with k robots, i.e. k robots
having the task within their sensing/actuating region [10].

This problem brings about an interesting trade-off where the
network, when homogeneously working towards provisioning

each task with k robots, they will inherently neglect large
areas of the environment in which new tasks may arise and
hence will not be able to detect those. In turn, if all robots
try to cover the entire area, provisioning tasks with k or more
robots can only happen if the initial layout does bring about
the respectively required overlap in areas they can provision.

To overcome this problem, we define two distinct type of
teams where each robot in a given team would follow specific
goals: observers and followers. Observer try to maximise
the number of detected tasks in the network by covering
the initially given area. Followers, on the other hand, try to
continuously provision tasks in order to ensure the task is k-
covered.

Trying to balance this trade-off with robots affiliating them-
selves with teams, allows us to define the following research
questions:

1) Can a permutation of multiple teams outperform single,
homogeneous teams in terms of achieved k-coverage and
the number of detected tasks?

2) Does a random selection of a team affiliation by the
individual robots improve the performance of the entire
network with respect to k-coverage and the number of
detected tasks?

3) Can we enable each robot to make more profound
decisions about team affiliation to improve network-wide
performance in terms of k-coverage and the number of
detected tasks?

The contributions of this paper are as follows. First, we anal-
yse the benefit of having multiple teams in comparison to sin-
gle, homogeneous teams within a robot collective. Second, we
propose a goal-aware team affiliation approach and we show
that such a dynamic affiliation with a team during runtime,
based on network-wide aggregated information about the state
of achieving the goal, can outperform static teams assigned
at deployment. Furthermore, we compare this approach based
on snapshot information against machine learning approach,
building up knowledge over longer periods of time. Finally,
we show that, while using the same performance metric,
our proposed approach as well as learning-based approaches
perform consistently even when changing the underlying goal
of the collective.

The remainder of this paper is structured as follows. In
the next section we give a formal problem description. In
Section III we discuss related work in the field of dynamic



team affiliation and task assignment as well as field of multi-
object k coverage. Section IV analyses the benefits of hetero-
geneous teams over the performance of homogeneous teams
and Section V discusses different dynamic team affiliation
approaches, including a novel, distributed, goal-aware team
affiliation approach. Section VI measures the efficiency of the
proposed approaches using an additive (e, d)-approximation
scheme. Section VII concludes the paper and gives an outlook
on potential future work.

II. PROBLEM STATEMENT

The multi-task k-assignment problem is defined in [10] and
can be stated as follows.

Consider a set of tasks O; = {o1,09,...,0,,} at time
t that need to be provisioned and a set of mobile robots
R = {ry,72,...,r,}. Importantly, the set of robots remains
constant while the set of tasks may change over time as
new tasks may arise and others disappear/resolve. Tasks are
unknown to the robots until a task is within the sensing area
of a robot. They arise and remain with a probability of ¢ and a
duration of -, respectively. Neither tasks nor robots are static
and can move around in a 2D plain with a velocity ;(t) and
an orientation w;(t), an angle defining the orientation of the
robot relative to a fixed reference point. Their location at time
t is denoted as Z;(t) = (z;,y;). Specifically, the discrete-time
behaviour of a robot r; can be defined as

Ti(t+1) = Zi(t) + 6(1)
wi(t—|—1) zwi(t)—kui(t) (D)

This velocities §; and wu; are controlled by an internal au-
tonomous software agent.

Robots communicate via message passing and employ a
unit disk model to simulate wireless communication with a
fixed range of c; for simplicity. Finally, each robot has a
dedicated sensing/actuating area f;. We consider a task o,
to be provisioned by a robot r; if the task is within the
sensing/actuating area f;, where f; = (wj, i, ;). Here, w;
is the orientation, (3;, defines the width on either side of
w;, and s; is the range of the sensing area. Such directional
sensing/acting areas can be found in robots with limited space
for interaction or also in mobile smart camera systems. The
range of a robots sensing/acting area is limited by the distance
at which a task can be detected and provisioned. Therefore,
a robot’s state is defined as r; = (Z;,w;, fi, ¢;). This defines
a snapshot at a particular point in time and can be further
indexed by ¢ to represent the robot’s state over time.

The mobile robots are now tasked with two goals. First,
they should maximise the number of tasks being provisioned
at any given time ¢. We consider a task o, to be provisioned
at time ¢ by a robot r;, if the task is geometrically within f;:

1, ifdig < s & el < B
pro(0a, fist) = { 0, otherwise,

where d(i7a) represents the distance to the task and o,
represents the angular distance between the orientation fo the
robot and the task.

ri
Fig. 1. [Illustration of a task in a robot’s sensing/actuating area. The
sensing/actuating area is illustrated in blue with a range s;, an orientation
wj, and angle 3; on both sides of w;. The task is at angle o; 4 to the robot’s
orientation and distance d; q.

However, each task requires k robots to be accomplished.
Therefore, the second goal requires them to maximise the
number of task provisioned with k robots. We consider a task
0, to be provisioned by k robots at any given time ¢ if

_ L Y pr(oa, fit) = k
kpro(oa, k, 1) = { 0, otherwhise.

We can therefore define a normalised metric of how well
online multi-task k-assignment is achieved as:

T m
Za:l kav(Oav k’ t)
OMC), = E O] 2
t=1

for a given value of exactly k. Additionally, we define
OMC}, as the result where we consider all results of k
but also incorporate all results where more than k robots
provisioned the task.

Furthermore, we are interested in the number of detected
tasks by the network:

T m
DET = Z Z det(0q,t) (3)

t=1a=1

where

det(0q,t) = { Loif Y pro(oa, fi,t) = 1

0, otherwhise.

III. RELATED WORK

Team formation and respective team maintenance has been
widely studied in nature and sociology [3], [11], [12]. In
nature, social animals often form teams in order to overcome
common goals, these goals can either be on the entire network-
level (e.g. in foraging bees or ants) or on the team-level (e.g.
in groups of spotted hyena). Besher and Fewell [3] thoroughly
discuss models for division of labour which inherently lead to
team formation within social insects. Conradt et al. discuss
group decision-making in animals as well humans [1], [12]
and how such decisions can lead to the formation of groups.

Gross et al. [6] discuss to what degree individuals, per-
forming a collaborative task, require individual recognition



or inter-individual differences in order to achieve complex
division of labour in self-organised groups. Their findings
show that teamwork requires neither individual recognition nor
inter-individual differences among the participating entities.
Pascal et al. [13] investigate different group sizes to achieve
efficient team allocations to given tasks in foraging scenarios.
Their presented models show that the number of allocated
individuals per team can have an impact on the performance
of the entire system in achieving their goals. Theraulaz et
al. [14] investigate the benefits of reinforcing the threshold for
selecting a team affiliation in foraging scenarios. They show
how learning process for this threshold will lead to robust task
allocations and specialisation of the individuals.

Processes of team building have also been heavily stud-
ied in humans in the area of Psychology, Sociology, and
Management (e.g. [15]). Marks et al. propose a taxonomy
of team processes and argue that they can generally divided
into an action phase and a transition phase towards new
actions. However, the different processes can be transient
across phases. In contrast, we incorporate this transition phase
entirely into the respective action phase. Standifer et al. [4]
investigates the impact of temporal shared mental models on
the performance of a collective to achieve a common task.
They show that such a shared mental model can benefit not
only the individual team but the collective of all teams if they
are working towards a common goal.

Soon technical sciences picked up team formation especially
in the area of multi-robot systems collaborating towards a
new goal. Jennings et al. [8] propose to use teams of mobile
robots for collaborative search and rescue operations. Indi-
vidual robots would search the area and upon encountering
an object, they will request others to help ‘rescue’ the object.
Krieger et al. [16] employ techniques observed in ant foraging
processes to allocate tasks and recruit new robots into the
team. They found that affiliating entities with teams based
on information exchange are more efficient in achieving their
task than without information exchange. They also show the
impact of the team size on the performance of the respective
team. Bererton et al. [7] enables teams of robots to collaborate
in repair and docking tasks. They envision such systems of
collaborative robotic teams to be deployed on deep space
exploration missions. Grabowski et al. [17] uses autonomous
robots for exploration tasks. Here the robots can join different
teams in order to explore different areas of the environment.
Furthermore, they collaborate in order to improve their local-
isation capabilities.

Another important application in multi-robot systems is
called Cooperative Multi-robot Observation of Multiple Mov-
ing Targets (CMOMMT). Here a set of robots tries to find
and cover moving targets that are initially unknown. The
problem was first introduced by Parker and Emmons [18].
Werger and Matari¢ [19] propose W-CMOMMT (weighted
CMOMMT) giving a weight to each target. A robot then
broadcasts local eligibility in order to coordinate tasks among
all robots. Since targets are initially unknown, Jung and
Sukhatme [20] learn densities of sensors and targets. They

use this information to direct idle robots to insufficiently
covered areas. To ensure continuous l-coverage of various
objects, Kollin and Carpin [21] perform a target loss prediction
allowing the individual devices to call for help in a timely
manner.

In the multi-object k-coverage problem, studied in this
paper, CMOMMT is combined with the k-coverage problem of
sensor networks introduced by Huang and Tseng [22]. The k-
coverage problem assumes a set of sensors covering the entire
environment. The goal is to select a subset in order to cover
specific stationary locations with at least k& sensors. This allows
to conserve resources of the network by turning off sensors
not in the required subset. Hefeeda and Bagheri [23] propose
a distributed approach to approximate optimal k-coverage in
a network. Elhoseny et al. [24] propose using mobile nodes
to cover known and stationary targets with k sensors. In order
to optimise the coverage, they use an evolutionary approach.
Liu et al. [25] analyse the benefits of moving sensors to
detect and cover specific, but unknown, stationary points in the
environment. Fusco and Gupta [26] propose a simple greedy
algorithm to optimally place and orient directed sensor for
k-coverage of static objects in the environment. In camera
networks, Micheloni et al. [27] identify activity density maps,
determining areas highly frequented by target objects and use
an expected-maximization process to define optimal orienta-
tions of PTZ cameras. CMOMMT and coverage optimisation
in camera networks has been researched quite intensively [28],
[29], [30]. However, the problem of k-coverage with unknown
number of mobile targets only received little interest yet.

IV. STATIC TEAM AFFILIATION

In order to achieve high number of provisioned tasks
OMC), and OMCy4 as well as a high number of detected
tasks DE'T, Esterle and Lewis [9] propose different communi-
cation and response models. However, Esterle notes that static
devices, not moving in the environment, detect the highest
number of tasks in comparison to any of the other approaches
employing mobile devices [10], [31]. Therefore we want to
analyse the effect of having mobile and static (immobile)
robots on the performance of the collective. We consider two
fundamentally different type as separate, but collaborative,
teams to which each robot can join:

e Observer: are robots that observe the environment from
their initial position and given their initial pose. They
provision only those tasks passing through their sensing
area.

o Follower: are robots that can move around in the environ-
ment. They actively follow a designated task and abandon
their initial position.

A robot r; can detect tasks autonomously as soon as the task
is within the f;. The robot continuously broadcasts the position
of the task to other robots in the network as long as it is within
fi- Each robot will set the closest task as its designated task.
An autonomous internal software agent will try to keep the
task within f; by adjusting ¥; and w; accordingly.



Importantly, each type of team has its benefits and draw-
backs with respect to the multi-task & assignment problem
for the entire network. On one hand, observer teams remain
in their initial position and cannot follow tasks through the
environment. This severely limits the duration of provisioning
the respective task. Furthermore, this means, provisioning
tasks with multiple robots can only occur when these robots
have overlapping sensing/acting areas to begin with. However,
observers can cover larger areas and detect more tasks in the
environment overall. On the other hand, follower teams can
provision tasks over longer periods of time and can achieve
k coverage more easily as they can re-locate and are not
restricted to their initial location for acting/sensing. However,
follower moving around might lead to clustering of robots in
certain locations making the remaining area of the scenario
not covered. This means, tasks appearing in these uncovered
areas are missed completely and are not noticed at all.

First, we are interested in networks where a team is assigned
statically to each robot and cannot be changed during runtime.
This results in 2 different static assignments or configurations
in terms of team affiliations for a network with n robots.
Second, we also analyse dynamically changing team affiliation
where each robot (a) selects a team affiliation randomly, (b)
uses our novel, goal-aware team affiliation scheme, and finally
(c) uses well known machine learning approaches, i.e. multi-
armed bandit problem solvers, to select and change its team
affiliation at runtime.

A. Simulation Environment

We tested a homogeneous and heterogeneous assignment
of mobile and static team affiliations across all robots on
10 randomly generated scenarios using CamSim [32]. All
scenarios have an environment of the size 40 x 40 meter with
10 deployed robots. While robots are randomly placed and
oriented, the size of their sensing area the same for all robots,
i.e. an angle of 35° degrees (8; = 17.5) and a range s; = 10
meter. The goal of the network is to provision each task with
k = 3 robots. Initial location and orientation of each robot has
been sampled randomly from a uniform distribution. A total
number of 5 tasks can be present at maximum at any discrete
time step. Tasks and robots follow a random trajectory until
reaching the border of the simulation environment and bounce
back in a random trajectory ensuring a constant number of
robots in the experimental environment. Tasks can not move
faster than robots making sure follower robots can provision
moving tasks continuously.

Our first results presented in Figure 3 gives an example
outcome of scenario 6 and clearly shows the benefit of hetero-
geneous teams in the network, as expected. The experiment has
been repeated 30 times due to stochasticity and mean values
are shown. The red x show the performance of single homoge-
neous teams, i.e. all robots are either follower or observer. In
our results we compare on one hand the total number of tasks
discovered and the number of tasks provisioned. In all our
initial experiments, pure observer teams perform better than
homogeneous follower teams in terms of detecting tasks to

be provisioned. At the same time, observer teams outperform
follower teams when it comes to provisioning tasks with k
robots. This clearly shows the trade-off between detecting a
high number of tasks and provisioning them with k robots.
Surprisingly, it is quite important whether we are interested
to provision tasks with at least k robots or with exactly k
robots. Figure 3c shows results where we were analysing the
outcome of provisioning tasks with k£ or more robots, while
Figure 3d shows the results where we analyse the results of
provisioning each task with exactly k£ robots. While in both
cases heterogeneous teams perform best, the ratio of observer
and Follower has an important impact on the performance. If
we are interested in provisioning tasks with at least k robots,
a high ratio of followers is important (about 80 — 90%). In
contrast, when aiming to provision each task with exactly k
robots, a higher number of observers is better (again about
80 — 90%).

The number of detected tasks by each configuration in
the scenario is normalised by the maximum number of tasks
detected across all configuration. The number of tasks pro-
visioned by k robots is normalised by the total number of
available task, independent of whether they have been detected
or not. Each of the 10 scenarios have been repeated 30 times
and mean values are given.

While we can clearly see from our example results that
a ratio of 80% observers leads to quite good outcomes, the
spread in results with this ratio also indicates that the selected
robot to affiliate with the follower team has an important
impact.

V. DYNAMIC TEAM AFFILIATION

Instead of static assignment of team affiliations, we also
investigate dynamic team affiliations within the collective. This
means, each individual robot can decide whether it prefers
to remain in its current team or switch to the other team
at runtime. When switching to the observer team, a robot
returns to its initial position. In this work, we investigated
three different schemes to making such a decision: using a
random decision process, a process based on collective goal-
aware decisions, and a process based on machine learning
techniques.

A. Random Team Affiliation

When employing Random Team Affiliation (RTA) each robot
can select a new team at random. However, we do not allow
each robot to select a team at any given time as this might
lead to a strong fluctuation of team members in both teams. In
other words, it might happen that a team member constantly
switches team affiliations. To avoid this, we assume a robot
commits itself for a given period of time A. During this period
of time, a robot will not attempt to change its affiliation to
another group. A team affiliation is randomly sampled from a
uniform distribution.

B. Goal-aware Team Affiliation

As an alternative to RTA, we propose a novel approach
enabling each robot to aggregate network-wide information
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Fig. 2. Examples of scenarios: Green spots indicate the locations of the robots, associated green circle segments indicate their respective sensing areas.

about the current state of the collective and hence allowing it to
make an informed decision about its team affiliation. The state
of the network is not kept centrally but aggregates the state
of the collective locally on each robot, using the broadcasted
information of each robot in the network. While teams follow
common goals (i.e. increase the number of detected tasks
(DET) or increase the number of provisioned tasks OM Cy,),
the individual robots are not aware of which other robots
belong to which team or how many members each team has.

Based on the disseminated information of each individual
robot in the network, each robot can derive the following
information. First, the number of tasks detected and currently
within any f; of the network

ndet(t) = Z det(0g4,1), )
a=1

and second, the number of robots currently provisioning at
least one task

ndpro(t) = dpro(fi,t), 5)
=1
where

dpro(fi,t) = {

Employing this knowledge allows them to make a decision
whether or not robots might be need to provision all avail-
able tasks. Since all robots receive the same information at
potentially the same time, the robots use this information as
a dynamic threshold for randomly sampled variable from a
uniform distribution. The state is determined as follows:

( ndpro(t) )
k

ndet(t)

17 lf ZT:l prv(oaafivt) Z 1
0, otherwhise.

state(t) =1 —

where state represents the required ratio of followers for the
current number of tasks. This means, the state gives each
individual robot a notion of required followers and observers
in the team respectively. Therefore, depending on the value of
state, each robot either affiliates itself with the team

if state(t) <0 and |state(t)| > ran, or
if state(t) >0 and |state(t)| > ran.

Observer,
Follower,

where ran is a randomly sampled variable from an uniform
distribution. A robot remains in its current team otherwise.
We term this approach Goal-aware Team Affiliation (GTA),
as individual are aware of the goals within the network and
have an idea of the progress towards achieving these goals on
a network-level.

C. Team Affiliations using Machine Learning

In addition to GTA, we are also interested in using machine
learning approaches to decide on a team affiliation at runtime
by each individual robot (Machine Learning Team Affiliation
(MLTA)). To do so, we employ simple multi-armed bandit-
problem solvers from the literature, namely, e-Greedy [33],
UCBI [34], and SoftMax [33]. Multi-armed bandit problem
solver idealise the explore vs. exploit dilemma, i.e. whether
to stick with the current team or switch team affiliations.
To provide equal opportunities to the bandit problem solving
algorithms, we use the same information as for the GTA
approach. However, instead of using state as a dynamic
threshold to decide whether to switch teams or not, we use it
as part of the reward function of the current team for the multi-
armed bandit problem solvers. For the teams we calculated the
reward as follows:

reward = (state(t)) X A.
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where

L
)\—{ b

At regular intervals, each robot will calculate the reward
for its currently selected team locally and decide whether to
affiliate with the other team or remain in its current team.

if d; is currently affiliated with follower
otherwhise.

VI. RESULTS

To test our dynamic team affiliation approaches, we first
performed and compared RTA, GTA, and MLTA, using multi-
armed bandit problem solver against (i.e. SoftMax [33],
UCBI1 [34] and e-Greedy [33]), against Static Team Affiliation
approaches in our 10 scenarios as depicted in Figure 2
using the simulation tool CamSim [32]. For Dynamic Team
Affiliations (i.e. RTA, GTA, MLTA) each robots is initially
affiliated with a random team sampled from a uniform dis-
tribution. SoftMax is used with a temperature of 7 = 0.1,
determining the uniformity with which an action is selected.
A low temperature means an action with an expected high
reward is selected with a higher probability. e-Greedy is used
with € = 0.1 indicating the probability to explore a new team
rather than exploiting the currently best one.

Figure 4 shows the mean performance of the different
configurations and approaches averaged over 30 runs for
each scenario with respect to DET and COV}, or COVjy,
respectively. For all experiments, k = 3, 5; = 17.5, r; = 10,
o = 0.05 and v is randomly drawn from [5,100] with a
uniform distribution. For RTA, A = 20 discrete time steps.

From the three examples given, we can see that in all cases
UCBI1 achieves the highest rate of detected task (DET)in the
network throughout the entire scenario. In many cases, GTA
is still able to outperform almost all heterogeneous team affil-
iations. Furthermore, we can note how GTA, RTA, and UCB1
outperform any static team affiliations in terms of provisioning
tasks with at least k£ robots (OM Cy). Importantly, we tested
all potential affiliation configurations within a network and
only a few of those are able to outperform GTA, RTA and
UCBI in terms of provisioning tasks with exactly k robots
(OMC}). We speculate that the initial location of each robot
as well as the relation to other robots may indicate the optimal
team for each robot. However, without a priori knowledge
of the scenario, the optimal team for each robot, ensuring
the network to outperform any dynamic team affiliation, is
not determinable. Importantly, this a priori knowledge is not
required for our proposed approach.

Tables I, II, and III present a pair-wise comparison of the
different approaches, for individual robots to affiliate with
teams, against each other. We tested the different approaches
in a number of scenarios with arbitrary initial positions for the
robots. The initial position of a robot also corresponds to the
location and orientation an observer would take up.

Given the good outcomes of our dynamic team affiliation
approaches, we would like to demonstrate that the number
of experiments performed is sufficient for high confidence
in our results. This requires us to determine the appropri-
ate number N of random variables Z;,...Zy necessary for

the Monte-Carlo approximation scheme we apply to assess
efficiency of our approaches. For this purpose, we use the
additive approximation algorithm as discussed in [35], [36]. If
the sample mean py = (Z1 +...+ Zy)/N is expected to be
large, then one can exploit the Bernstein’s inequality and fix
N to Y ocln(1/8) /2. This results in an additive or absolute-
error (g, 0)-approximation scheme:

Pluz —e <z <pz+e)=>1-4,

where iz approximates pz with absolute error € and proba-
bility 1 — 4.

In particular, we are interested in Z being a Bernoulli
random variable indicating whether a specific approach outper-
formed another approach in terms of the number of detected
tasks DET and the provision of tasks OMC}, and OM Cl,.

We can use the Chernoff-Hoeffding instantiation of the
Bernstein’s inequality, and further fix the proportionality con-
stant to Y = 41n(2/J)/£2, as in [37]. Hence, for our performed
60,000 experiments, we achieve the following success rates
as given in the Tables I, II, III. The indicated results are a
direct comparison of the different approaches and are given
with an absolute error of ¢ = 0.02 and confidence ratio
0.99. Table I gives an overview of the comparison between
the different approaches when trying to provision tasks with
exactly k robots. While UCB1 and e-Greedy perform better
than pure Follower teams, our proposed GTA performs better
than any of the other tested techniques. In this case, we ensure
to not over-provision the tasks with robots. This is important
when such over-provisioning does not yield in more efficient
performance.

Interestingly, when the opposite is important, i.e. tasks do
benefit from having more than k& robots provision them, a
simple Random assignment works best, as shown in Table II.
Also, in not a single case of the performed 60,000 experi-
ments, homogeneous observer teams outperformed any other
approach with respect to provision tasks with k+ robots.
However, in a direct comparison, GTA is usually quite close
(in most cases within 5%) to the success rate of Random.
Furthermore, GTA still outperforms Random in ~ 41% of all
performed experiments.

Finally, when comparing the performance with respect
the number of detected tasks (cp. DET in equation 3) in
Table III, we can see that throughout all experiments UCB1
can outperform the other approaches most often. Again, GTA
is quite close in achieving similar success rates as UCBI.
However, this result is rather unexpected as the fitness function
for the bandit problem solver does not consider the number
of detected tasks explicitly but rather implicitly limits the
number of robots provisioning tasks and hence limits over-
provisioning.

VII. CONCLUSION

In this paper we investigated the effect of teams on the
performance of multi-robot systems to achieve contrasting
goals. The follower team follows tasks in order to provision
them with at least & robots. This eventually leads to clusters of
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Fig. 4. Comparison of performance of homogeneous and heterogeneous teams against dynamic team affiliation during runtime. Figures on the left show
the performance when trying to provision each task with & or more robots. Figures on the right hand side show the performance of heterogeneous and
homogeneous teams when trying to provision each task with exactly k robots. The different colours for heterogeneous assignment indicate the ratio between
the number of static and mobile robots.



Follower  Observer GTA SoftMax UCBI1 ¢-Greedy Random
Follower - 9.15  100.00 91.00  100.00 100.00 99.48
Observer 90.40 - 100.00 98.37 100.00 99.99 99.68
GTA 0.00 0.00 - 0.11 34.23 1.50 0.01
SoftMax 8.51 1.56 99.89 - 99.82 98.74 78.64
UCBI 0.00 0.00 65.15 0.18 - 2.70 0.02
e-Greedy 0.00 0.01 98.45 1.23 97.21 - 4.51
Random 0.49 0.30 99.99 20.86 99.98 95.33 -
TABLE I

COMPARISON OF THE PERFORMANCE OF APPROACHES IN PERCENT WITH RESPECT TO THEIR ABILITY TO PROVISION TASKS WITH EXACTLY k£ ROBOTS.
E.G. 98.58% OF THE EXPERIMENTAL RESULTS USING SOFTMAX ARE BETTER THAN THOSE RESULTS USING OBSERVER ASSIGNMENT. THE DIFFERENCE
BETWEEN THE SUM OF TWO APPROACHES AND 100 REPRESENT THE PERCENTAGE OF RESULTS BEING EQUAL IN PERFORMANCE. A TOTAL OF
60,000 EXPERIMENTS HAVE BEEN PERFORMED. RESULTS HAVE A CONFIDENCE LEVEL OF 99% AND £ = 0.02 ABSOLUTE ERROR.

Follower  Observer GTA SoftMax UCB1 e-Greedy Random
Follower - 0.00 84.59 36.78 82.04 37.72 89.79
Observer 100.00 - 100.00 100.00 100.00 100.00 100.00
GTA 15.22 0.00 - 5.44 42.41 3.87 58.13
SoftMax 62.84 0.00 94.44 - 92.60 50.55 96.59
UCBI 17.74 0.00 57.04 7.27 - 4.68 63.39
e-Greedy 61.93 0.00 96.03 48.97 95.21 - 97.34
Random 10.04 0.00 41.44 3.34 36.19 2.59 -
TABLE I

COMPARISON OF THE PERFORMANCE OF APPROACHES IN PERCENT WITH RESPECT TO THEIR ABILITY TO COVER TASKS WITH k > 3 ROBOTS. E.G.
36.64% OF THE EXPERIMENTAL RESULTS USING SOFTMAX ARE BETTER THAN THOSE RESULTS USING FOLLOWER ASSIGNMENT. THE DIFFERENCE
BETWEEN THE SUM OF TWO APPROACHES AND 100 REPRESENT THE PERCENTAGE OF RESULTS BEING EQUAL IN PERFORMANCE. A TOTAL OF
60,000 EXPERIMENTS HAVE BEEN PERFORMED. RESULTS HAVE A CONFIDENCE LEVEL OF 99% AND LESS THAN 2% ABSOLUTE ERROR.

Follower Observer GTA  SoftMax UCB1 e-Greedy Random
Follower - 89.26  99.61 92.08  99.66 99.35 99.23
Observer 10.68 - 89.96 3940  95.78 83.57 61.71
GTA 0.39 9.95 - 470  74.82 36.14 13.66
SoftMax 7.84 60.40 95.27 - 9783 93.79 75.53
UCBI 0.34 4.16 2497 2.14 - 17.26 6.05
e-Greedy 0.65 16.31  63.59 6.14  82.61 - 22.99
Random 0.76 38.14 86.21 2428  93.89 76.89 -
TABLE III

COMPARISON OF THE PERFORMANCE OF APPROACHES IN PERCENT WITH RESPECT TO THEIR ABILITY TO DETECT TASKS IN THE ENVIRONMENT. E.G.
88.89% OF THE EXPERIMENTAL RESULTS USING OBSERVER ARE BETTER THAN THOSE RESULTS USING FOLLOWER ASSIGNMENT. THE DIFFERENCE
BETWEEN THE SUM OF TWO APPROACHES AND 100 REPRESENT THE PERCENTAGE OF RESULTS BEING EQUAL IN PERFORMANCE. A TOTAL OF
60,000 EXPERIMENTS HAVE BEEN PERFORMED. RESULTS HAVE A CONFIDENCE LEVEL OF 99% AND LESS THAN 2% ABSOLUTE ERROR

devices in specific areas of the environment and leaves other
areas unattended. In contrast, the observer team take up a
defined position in order to detect newly arising tasks in the
environment. This leads to a trade-off between goals of which
both of them should be maximised within the collective of
both teams.

While assigning a static team to each of the robots in
the network at deployment time already outperforms single,
homogeneous teams, operators have to know exactly which
device to select for which team. Furthermore, we showed in
this work how static teams are affected by the specifics of
the overall goal. Even slight variations in the goal formulation
already result in drastically diverging outcomes in performance
of the entire network.

To overcome this limitation, we enable devices to choose

their own affiliation with a team locally and at runtime. By en-
abling robots to aggregate network-level goal information and
use this to select a team at runtime, they can outperform ran-
domly sampled affiliations. We further investigate and compare
this with well known machine learning techniques, namely
multi-armed bandit problem solvers. In 60,000 experiments we
directly compared each individual approach against each other.
While both, UCB1 and our novel approach, GTA, performed
better than the remaining approaches, their strength depends
on the actual goal they pursuit. While GTA performs best in
provisioning tasks with exactly k& devices, UCBI1 constantly
finds most of the tasks arising in the network.

In our future work we want to focus on two important
aspects we have uncovered in this work. First, we have seen in
a small set of experiments that heterogeneously selected team



affiliations at deployment can outperform dynamic team affil-
iations in terms of provisioning tasks with exactly & devices.
More thorough analysis of the properties that constitute and
allow optimal affiliations at deployment time is required. This
would not only allow further analysis of statically assigned
teams at deployment against dynamic team assignments dur-
ing runtime, but might also give further insight to improve
dynamic team affiliations.

Finally, in this work we assume all robots are cooper-
ative and support the respective team efforts. While non-
collaborative robots should not pose a problem to the remain-
der of the network, we would expect that actively adversarial
devices might indeed be problematic to the network-wide
outcomes. In a next step, we will investigate the performance
of the network in the presence of such adversarial robots,
actively trying to perturb the network.
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