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Abstract—Robots are used in various types of applications
in manufacturing, ranging from assembly to machine tending.
Changes in production lines are becoming more common, either
due to product changes, requiring changing manufacturing pro-
cesses, as well as faults, caused by wear and tear of the robots.
In such cases it is crucial that the robot system can adapt to
the new circumstances. Recently the concept of Digital Twins
(DTs) has gained a large amount of interest in both academia
and industry. The idea of a DT is to have a digital copy of a
physical system, where both systems exchange information which
can be used to adapt the system to unforeseen changes in itself
or its environment. This enables a DT to perform self-adaptation
when problems arise during operation. However, development of
a DT, whether for existing or future robots, is cumbersome. We
therefore propose a development of modular DTs and outline
our methodology for creating DTs for robot systems, their
shortcomings and open challenges. Such a modular DT can
be utilised to safely explore the potential adaptations of the
physical system and its performance in changing environmental
conditions.

Index Terms—digital shadow, robotic arms, modularity, visu-
alisation

I. INTRODUCTION

Industrial robots, and robot systems in general, become
more modularised, often combining a potentially mobile base
platform, end effector(s), data connections, and robotic arm(s)
of various lengths [1] (see Fig. 1). This modularity offers great
flexibility for robot system designers and even allow the robot
to self-adapt to changing requirements by replacing individual
components (e.g. changing the end effector). The end effector
is connected via an end effector coupling device (EECD) to the
robotic arm and used for executing the task. This is necessary
as the individual components in a robot system are often
produced by different manufacturers, with the exception of
the EECD and end effector, which are typically produced by
the same manufacturer.

Over the past years, Digital Twins (DTs) [2] have gained
popularity. DTs provide accurate models of physical systems.
In contrast to computer models, DTs can exchange informa-
tion bi-directionally during runtime. This enables the users
to observe the behaviour of the system but also to control
the physical system through the DT. Digital Shadows (DSs)
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present a necessary preliminary stage of DTs, while only im-
plementing the one-way, physical-to-virtual connection. Thus,
changes of the physical entity are mapped to the virtual entity
but not vice versa [2].

Furthermore, DTs have traditionally been utilised for pre-
dictive maintenance, fault and error prediction, runtime veri-
fication, and various safety operations for individual compo-
nents and entire robot systems. However, designing DTs is
usually done for a single, consistent robot system. With rising
modularity of robot systems and robots operating in dynamic
environments expected to adapt themselves to changing con-
ditions, more flexible DTs are required as well. Specifically
in SISSY settings, this flexibility of DTs has several benefits:

• Self-improvement through exploration of potential
changes to the physical robot and its impact on the
performance before executing the adaptation.

• Identification of changes in the environment or on the
robot due to a performance drift between physical system
and DT.

• Verified adaptation by combining pre-verified DT mod-
ules.

In this paper we illustrate the first step towards modular
DTs. The main contributions of this paper can be summarised
as:

• (Section III) We propose an architecture to aid develop-
ment of flexible and modular DTs.

• (Section IV) We illustrate the approach through a case
study where we develop two DSs of different robot
systems.

• (Section V) We outline how we believe to move forward
in the development of modular DTs of robot systems by
describing main technologies in this field.

Section II provides an overview of DT concepts in robot
systems and discusses related work and the main advantages
of using DTs for robot systems. Concluding remarks are
presented in Section VI.

II. OVERVIEW OF DIGITAL TWINS FOR ROBOT SYSTEMS

A DT consists of a physical entity, a digital entity and a
bi-directional communication. The physical entity sends data
to the virtual entity, which analyses the data and returns
information to the physical entity. This section describes the
related work in the area of digital twins of robot systems, and
the main advantages presented by others for creating DTs of
robot systems.
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Fig. 1: Most common devices in a robot system.

A. Related Work and Technologies

Hoebert et. al. [3] present a DT framework for industrial
robot systems focused on assembly planning. The key feature
of the framework is a semantic ontology description created
in Neo4j. It describes the robot and workpiece geometry,
and assembly actions linked to required tools for individual
operations. The virtual entity is implemented in HTML-5.
The communication is implemented via HTTP and JSON.
3D real-time rendering is implemented using BabylonJS tool
and WebGL. The framework is validated on a KUKA robot
assembling various components on a PCB board.

Arkouli et. al. [4] present a lumped parameter model con-
sidering joint flexibility of a robot manipulator. They describe
a method for calibrating the model parameter through an
iterative calculation of the error between measurement and
simulation data.

Barenji et. al. [5] present a DS for a robot manipulator,
they: (i) create a 3D CAD model, (ii) generate a URDF file,
(iii) derive kinematics, and (iv) plan trajectories with respect
to minimum energy while avoiding collisions.

Huynh et. al. [6] present a DS to simulate robot movement
in a web application. They created this using the Python Flask
micro framework and the JavaScript API, WebGL. A model
of the manipulator was created using a json file to describe
the kinematics of the robot. The presented application has
a considerable delay of over 1 second when visualising the
movement of the physical robot.

These studies present different frameworks, technologies
and tools towards creating DTs of robot systems. The majority
of the research reports on creating models for robot systems
and uses DSs for the visualisation of the movement of physical
robots in the virtual space. However, they do not describe how
to modularise the approach for robot systems.

B. Advantages of Digital Twins of Robot Systems

While DTs can be developed for robotic cells and lines
with several robots and auxiliary equipment, we constrain this
research to a single robot system, focusing on services related
to a single robot and not on supply chain and production plan-
ning related aspects. The main advantages of DTs for robot
systems are optimisation and improvement of the automated
processes themselves, while DTs of production lines focus

more on the optimisation of planning and scheduling between
multiple lines.

DTs of collaborative robot systems are often used for
visualisation and virtual commissioning. Havard et. al. [7] use
a DT to improve the layout and ergonomics of a workstation,
while ensuring the safety of the human operator. Baskaran
et. al. [8] show how a DT can help to find the optimum
assembly sequence. Malik et. al. [9] discuss the benefits of
reducing development costs and improving safety through
DTs. Fernández et. al. [10] test and validate configurations
of a robot system through simulation of real-world scenarios
using historic data of existing DTs.

Further, DTs of robots systems can help avoiding collisions
by adapting their trajectories. Tammato et. al. [11] and Huynh
et. al. [6] use DTs to visualise objects entering and leaving
the working area of a robot and to plan timely intervention
and re-calculation of motion trajectories.

Also, robotic DTs can support planning of maintenance
activities related to component failure. Aivaliotis et. al. [12]
predict the remaining useful lifetime of robot joints. Park et.
al. [13] classify failures of a robot system through a multi-
model DT approach.

III. MODULARISING DIGITAL TWINS FOR ROBOT
SYSTEMS

Robot systems are themselves modular, to a certain extent,
as it is possible to plug and play a number of products from
different manufacturers. As Fig. 1 illustrates, a robot system
is composed of a number of devices produced by various
manufacturers. The devices can be configured into a robot
system if they have compatible interfaces.

An approach towards modular DTs is established by iden-
tifying the main components within DTs of robot systems;
defining their interfaces and interconnections, and describing
domain knowledge.

The proposed architecture is illustrated in Fig. 2, where
the main modules and their connections are presented. There
can be multiple services in such a DT and depending on the
services, different types of models may be used and in some
cases none at all.

We define the main modules in a DT of a robot system to
be, the following (their connections can be seen in Fig. 2):
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Fig. 2: Proposed architecture for modular digital twins of robot systems.

• robot system: the physical system where the main de-
vices are the robotic arm and end effector. For these
devices to connect to the communication module of the
DT, they must have a compatible interface.

• physical communication: ensures a connection between
the robot system and the digital part to allow flow of
self-adaptation information and data.

• controller: responsible for ensuring relevant data ex-
change between the robot system and the services. This
is the main controller in the DT where all the data that
is exchanged passes through and is processed.

• digital communication: used to communicate informa-
tion between the controller and the services. Each service
may support a different communication protocol, which
the compatibility with the controller depends on.

• services: adds value to the DT by providing visualisa-
tions, predictive maintenance, optimisation, root cause
analysis, etc. As illustrated in Fig. 2 some services require
models.

• models: typically represent a part of the system and are
used in services. Different types of models can be used,
e.g. kinematic, dynamic, etc.

IV. CASE STUDY

We illustrate how to use the architecture by creating proto-
types of two DSs. To ensure modularity across manufacturers,
we chose to use robotic arms from two different manufacturers
and two types of end effectors. The physical and digital robots
are shown in Fig. 3.

An overview of the implementation is illustrated in Fig. 4,
where each of the parts in the implementation are described
in the following sections. The main properties of the DSs are
presented in Table I. The time lag presents how long it takes
on average to send data from the controller and receive it on
the visualisation service. The inputs to the service are currently
only the joint angles of the robotic arms, used for visualisation
purposes. However, any sensor information or data available
on the robot can be sent to the services as inputs.

A. Robot System (Physical System)

We refer to the case studies as Robot System A and Robot
System B. Robot System A is the Kuka Lbr Iiwa R800 manu-
factured by Kuka, and has seven degrees of freedom. It has a
two-finger gripper, specifically the 2FG7 Parallel Gripper from

Properties Values
Time lag Less than 500 ms on average
Sensors Built-in robotic arm
Inputs to service Joint angles of robotic arms
Models Kinematic (URDF)
Software Unity, ZeroMQ, Python

TABLE I: Overview of the main properties of the digital
shadows.

(a) Picture of the robots at DTL.
(b) Visualisation of the robots at
DTL.

Fig. 3: Illustration of the visualisation service of the two robot
systems.

Onrobot1, attached to it as its end effector for demonstrating
a Pick and Place application. Robot System B is the UR5e
manufactured by Universal Robots and has six degrees of
freedom. It has the Onrobot Screwdriver2 attached to it as
its end effector for demonstrating a screwdriving application.
The robot systems can be seen in Fig. 3, with Kuka 3.a (left)
and UR5e 3.a (right).

B. Physical Communication

A standardised communication interface for robot systems
is lacking, as stated by Sannemann et al. [14], making it
difficult to modularise the communication between a physical
and a digital counterpart. Creating physical communication
modules that are modular is a complicated task when working
with robot systems, as they typically need to be physically
connected and configured using an IP address.

The amount of work carried out in the development of
libraries for communicating with robotic arms varies sub-

1onrobot.com/en/products/2fg7
2onrobot.com/en/products/onrobot-screwdriver
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Fig. 4: Overview of the implementation of the DSs of the case studies based on the proposed architecture in Fig. 2.

stantially depending on the manufacturer. In many cases,
researchers or the industry have created third party software
to communicate with robotic arms. As an example, Universal
Robots has created the Real-Time Data Exchange (RTDE)3

protocol for interfacing with their robots. Multiple libraries
have been developed, building on top of RTDE, such as the
urinterface4 or the ur_rtde5. These libraries are open-
source, allowing others to utilise them when communicating
with robotic arms from Universal Robots. Other robotic arms,
such as Kuka robots, require more work to communicate with.
Researchers have developed a Matlab toolbox for communi-
cating with a Kuka robotic arm [15]. Other researchers have
created a cross-platform communication interface for Kuka
robots [16]. Apart from libraries developed for specific robots,
the Robot Operating System (ROS) middleware contains a ROS
Industrial6 package with a number of libraries for robotic
arms. Unfortunately, most of these ROS Industrial libraries
are still in experimental stages.

Our Implementation. The physical communication to the
two robots is implemented using two different frameworks.
The communication with the Kuka Lbr Iiwa was developed
in our lab, inspired by the work carried out in [17]. A Java
client was programmed on the Kuka controller and a Python
server was set up on the DT controller. The communication
between the controller and the UR5e was implemented using
the python framework urinterface. The data recorded
from both robots were the joint angles. Both robotic arms
were controlled by sending movement commands using the

3universal-robots.com/articles/ur/interface-communication/
real-time-data-exchange-rtde-guide

4pypi.org/project/urinterface
5sdurobotics.gitlab.io/ur rtde/index.html
6http://wiki.ros.org/Industrial

communication frameworks. Note, that these commands were
implemented as predefined movements that the robot executed
at run-time. This means there was no feedback-loop in the
control of the physical robot.

The physical communication can be accomplished using
different communication protocols depending on the type of
robot. Creating a framework similar to urinterface for
robots from different manufacturers and of different types is
beneficial, especially if such frameworks are combined into a
single tool. The tool would allow to easily programm different
types of robots from the same interface and is a great method
for modularising the physical communication. The physical
connection would be through an ethernet cable which typical
robotic arms support. A similar method used by the program
drag&bot7 is to connect a computer to the digital I/O ports of
a robot controller for configuring and programming the robot.
However, this is a more tedious process as each robot has
different requirements for the configuration and programming.

C. Digital Communication

We use an approach of publisher and subscriber modules,
for communicating between the controller and services. The
publisher module sends data to a topic that any module can
subscribe to for constant information exchange. We set up
a zeromq8 socket between the controller and the Unity9

visualisation, where the controller publishes the data received
from the physical system to a topic that the service subscribes
to.

7www.dragandbot.com
8https://zeromq.org/
9unity.com



D. Controller

Two controllers have been developed, one for each DS. Each
controller is implemented as a Python script that:

• sends predefined movement commands to the robot,
• receives measurement data from the robot,
• and publishes the joint angles to a port through a zeromq

socket
The controllers were both running on the same computer,
allowing us to combine the data into one visualisation.

E. Models and Services

Most services that can be used in a DT require some type of
model. For example, a service for energy optimisation or fault
detection would most likely require a model of the currents
powering the motors at each joint [5]. Another example is
presented by Bansal et al. [18] where they use kinematic
models in a simulation to detect objects and avoid collisions.

In this paper we focus on the visualisation service of the
DT, and illustrate it using kinematic models of the robots and
the game-engine Unity. One of the first steps towards creating
a DT is to set up the services for the system. In this case, we
set up a 3D visualisation of the robot systems, which currently
is a mirrored visualisation of the physical system.

The kinematic models of the UR5e and Kuka Lbr Iiwa
were developed by creating Unified Robot Description For-
mat (URDF)10 files for each robot. The URDF is an XML
formatted file representing a robot model [19], by defining
the position of the links (rigid bodies) and the joints that
connect the links. The URDF file allows defining meshes
for 3D visualisation, and the mass and inertia for simulation
purposes. URDF files are standalone and can be imported in
many different programs, such as Unity, RViz, etc., making
them easy to reuse in other services.

URDF files for a limited number of robots can be found
online on GitHub repositories such as ros-industrial11.
Unfortunately, it is not yet common practice for manufacturers
of robot devices to make such files publicly available, meaning
in many cases developers themselves must create these files. In
such cases the accuracy of the models may be affected. Creat-
ing a public database or repository where such models can be
uploaded may accelerate the process of creating modular DTs
for robot systems, as it allows developers to easily access and
utilise models instead of wasting time on developing them
themselves. To initiate this idea, we have created a public
GitHub repository and added our current models of the robot
systems for others to use. The repository can be found in the
link12.

The visualisation in Unity of this case study is shown in
Fig. 3b. A recording of the visualisation of a different system
can be found in the link13 illustrating how the DS works. Using
Unity allows us to extend the visualisations to Augmented

10http://wiki.ros.org/urdf
11https://github.com/ros-industrial/universal robot
12https://github.com/Daniella1/robot urdfs
13https://youtu.be/1vt7-qrFvZc

and Virtual Reality with various advantages. An example of a
future use could be to visualise important process parameters
or values such as the heat dissipated in a motor, allowing
technicians to rapidly localise faults in a system.

V. FUTURE DEVELOPMENTS TOWARDS DIGITAL TWINS IN
SISSY SYSTEMS

SISSY systems operate in open environments with dynamic
changes and are expected to self-improve their integration with
the environment and others [20]. Considering SISSY systems
to be cyber-physical systems, DTs can support the system to
perform exploration of potential adaptions without directly im-
plementing them in the physical system. Upon detecting such
an improvement in the digital system, the physical system can
also implement and utilise this improvement. However, with
traditional DTs, the system can only integrate and improve as a
whole [21]. Here, the modularity of robotic systems gives rise
to the benefits of modular DTs as they can support exploration
of changes within the individual system. Now a robot can
safely explore physical changes that may lead to improved
performance given a changed environment at runtime.

In our current implementation, the approach is not yet fully
modular, and therefore future work would be to develop a
framework or tool to ease the setup of modular DTs. As our
current implementation is a DS, it needs to be extended to a
DT by adding self-adaptation information flow from the digital
to the physical system. Communication from the digital to the
physical system has already been established, the main part
that is missing is the automatic update of the physical system
enabling self-adaptation. The services must also be expanded,
where we plan to use aurt for calibrating the dynamics of
the robotic arms [22]. This self-improvement mechanism can
potentially be used for anomaly and collision detection in a
self-adaptation loop. Assuming the extension is to perform
online collision detection and avoidance, then the information
from the controller to the physical system would be an updated
collision-free trajectory.

One of the approaches we are working towards is using co-
simulation for detecting anomalies and sending information to
the physical system on how to fix the issues. An example
where co-simulation has been used in a DT with a self-
adaptation loop is presented by Feng et al. [23]. Co-simulation
is the process of simulating models developed using different
tools. One of the most common standards used in the field of
co-simulation in the Functional Mock-Up Interface (FMI) [24]
which allows encapsulation of models as black boxes. Differ-
ent Original Equipment Manufacturers (OEMs) can provide
black box models of their devices using the FMI standard,
and at the same time protect their Intellectual Property. Such
models that implement the FMI standard are called Functional
Mock-up Units (FMUs). These black box models can then
be used in a co-simulation, where virtual scenarios of robot
systems can be assembled. Co-simulation allows simulating
these FMI-based black box models which can be developed
using different tools [25].



A direction to work towards together with the industry
would be to create a public database with FMUs containing
black box models of robots, their controllers and so on. If
the manufacturers of such robot devices uploaded FMUs to a
shared repository, then developing DTs of their products would
be a less demanding process. Currently, developers themselves
need to develop controllers for the robots if they want to
simulate them, which means the simulation of the robot and
its controller is an approximation of how the physical robot
would actually move. To achieve a simulation as close to
reality as possible, it is beneficial to use high fidelity models
developed by the manufacturers of the devices. We have
already developed a public method for creating FMUs using
Unity, and thus are already a step towards creating modular
DTs of robot systems and using visualisations as a service14.

VI. CONCLUDING REMARKS

In this paper we proposed an architecture for developing
modular digital twins that can be used in the development
of self-adaptive systems. We validated the approach by im-
plementing digital shadows of two different robot systems for
displaying the modularity of the approach. The implementation
of the digital shadows is uni-directional from the physical
system to the digital system. However, we plan to extend
the implementation to a digital twin where a self-adaptation
loop will be developed. This will be based on calibrating the
dynamics of the robotic arm, using aurt, and optimising the
movement of the robot when the motors start to show signs
of wear.
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